期刊文献+

基于前向预测并行追踪的视频压缩传感方法

COMPRESSED VIDEO SENSING METHOD BASED ON FORWARD PREDICTIVE PARALLEL TRACKING
下载PDF
导出
摘要 为了减小视频信号采集端的负担,提出一种基于压缩传感理论的视频压缩算法模型。该模型采用广义轮换矩阵获取视频帧的测量值,再结合视频压缩的运动补偿预测关键技术,消除视频帧间冗余。然后在并行贪婪追踪算法中引入前向预测技术作为重构算法,最终获取重构的压缩图像。实验对比了在不同算法下的重构图像和不同采样比下不同算法的重构PSNR值,然后利用所提方法得到视频序列的重构压缩图像。实验结果表明,该算法模型能较精确地获取压缩的视频图像,适合在视频压缩中应用。 In order to reduce the load at video signal collection end, we propose a video compression algorithm model which is based on com-pressed sensing theory.The model adopts generalised rotation matrix to acquire the measured values of video frames and then combines the key technology of motion compensation prediction of video compression to remove redundancies between video frames.Next, it introduces the forward prediction technology to parallel greedy tracking algorithm as the reconstruction algorithm, and finally obtains the reconstructed com-pression images.In the experiments we compare the reconstructed images with different algorithms and the reconstructed PSNR values with different algorithms in different sampling ratios, and use the presented method to obtain the reconstructed compressive images of video se-quence.Experimental results indicate that more accurate compressed video images can be obtained by the proposed algorithm model, and it is suitable for application in video compression.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第12期195-197,201,共4页 Computer Applications and Software
基金 江苏省科技厅工业支撑计划项目(BE2010072) 常州市科技局国际合作项目(CZ20123006)
关键词 压缩传感 视频压缩 广义轮换矩阵 并行追踪 Compressed sensing Video compression Generalised rotation matrix Parallel tracking
  • 相关文献

参考文献10

  • 1Candès Emmanuel J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians,Madrid,August 22-30,2006:invited lectures,2006:1433-1452.
  • 2Donoho David Leigh.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3Candès Emmanuel J,Wakin Michael B.An introduction to compressive sampling[J].Signal Processing Magazine,IEEE,2008,25(2):21-30.
  • 4古勇,田翔.基于压缩感知的视频压缩方案设计与实现[J].科学技术与工程,2011,11(2):359-362. 被引量:4
  • 5Dai Wei,Milenkovic Olgica.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
  • 6Needell Deanna,Tropp Joel A.CoS aM P:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 7Sundman Dennis,Chatterjee S,Skoglund Mikael.Look ahead parallel pursuit[C]//Swedish Communication Technologies Workshop(SweCTW),Stockholm,Sweden,IEEE,2011:114-117.
  • 8Chatterjee Saikat,Sundman Dennis,Skoglund Mikael.Look ahead orthogonal matching pursuit[C]//International Conference on Acoustics,Speech and Signal Processing(ICASSP),IEEE,2011:4024-4027.
  • 9李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 10Candès Emmanuel J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.

二级参考文献66

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部