期刊文献+

CIR利率模型下基于二次效用的资产–负债管理模型 被引量:1

Asset and Liability Management Model with CIR Interest Rate under Quadratic Utility Criterion
下载PDF
导出
摘要 应用动态规划原理和Legendre变换相结合的方法研究CIR利率模型下的资产–负债管理问题.假设金融市场由一种无风险资产、多种风险资产和一种零息票债券构成,其中短期利率的动态行为服从Cox-Ingersoll-Ross(CIR)利率模型,而负债的动态行为满足带漂移的布朗运动,且负债动态与股票价格动态存在相关性.文章以最大化终端财富的期望效用为目标函数,应用变量替换方法得到二次效用下最优投资策略的闭式解,并给出数值算例分析利率参数和负债参数对最优投资策略的影响.研究结果解决了均值–方差模型下的最优投资策略问题,为进一步分析和研究随机利率模型下的其它资产–负债管理问题提供了理论支持.数值结果表明:负债情形下投资于股票和零息票债券的数量多于无负债情形下的数量. This paper applies dynamic programming principle and Legendre transform to study an asset and liability management problem with CIR interest rate dynamics. Assume that the finance market is composed of one risk-free asset and multiple risky assets and one zero-coupon bond, where the interest rate is supposed to follow the CIR model and the liability process is driven by Brownian motion with drift, moreover, liability dynamics is generally correlated with stock price dynamics. The aim of an investor is to maximize the expected utility of terminal wealth. The closed-form solution to the optimal investment strategy under the quadratic utility case is obtained by applying the variable change technique, and a numerical example is given to illustrate the impact of interest rate parameters and liability parameters on the optimal policy. We obtain the optimal investment policy in the mean-variance framework and further provide theoretical foundation for other asset and liability management problems with stochastic interest rates. The numerical results imply that the amount invested in the stocks and zero-coupon bond in the liability setting is larger than that in the no-liability setting.
作者 常浩
出处 《工程数学学报》 CSCD 北大核心 2014年第6期791-804,共14页 Chinese Journal of Engineering Mathematics
基金 中国博士后科学基金面上项目(2014M560185) 教育部人文社会科学研究青年基金(11YJC790006)~~
关键词 CIR利率模型 负债过程 二次效用 LEGENDRE变换 闭式解 CIR model liability process quadratic utility Legendre transform closed-form solution
  • 相关文献

参考文献20

  • 1Cox J C, Ingersoll J E, Ross S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385-408.
  • 2Li J Z, Wu R. Optimal investment problem with stochastic interest rate and stochastic volatility: maxi-mizing a power utility [J]. Applied Stochastic Models in Business and Industry, 2009, 25(3): 407-420.
  • 3Chen P, Yang H L, Yin G. Markowitz’s mean-variance asset-liability management with regime switching: a continuous-time model[J]. Mathematics and Economics, 2008,43(3): 456-465.
  • 4Li C J, Li Z F. Multi-period portfolio optimization for asset-liability management with bankrupt control[J]. Applied Mathematics and Computation, 2012, 218(22): 11196-11208.
  • 5Chiu M C, Li D. Asset and liability management under a continuous-time mean-variance optimization framework[J]. Mathematics and Economics, 2006, 39(3): 330-355.
  • 6Xie S X, Li Z F, Wang S Y. Continuous-time portfolio selection with liability: mean-variance model and stochastic LQ approach [J]. Mathematics and Economics, 2008, 42(3): 943-953.
  • 7常浩,荣喜民.Ho-Lee利率模型下资产-负债管理的最优投资策略[J].工程数学学报,2012,29(3):337-346. 被引量:6
  • 8Yang H L, Zhang L H. Optimal investment for insurer with jump-difFusion risk process[J]. Mathematics and Economics, 2005, 37(3): 615-634.
  • 9Ferland R, Watier F. Mean-variance efficiency with extended CIR interest rates[J]. Applied Stochastic Models in Business and Industry, 2010, 26(1): 71-84.
  • 10Chiu M C, Wong H Y. Mean-variance asset-liability management: cointegrated assets and insurance liabil-ities[J]. European Journal of Operational Research, 2012,223(3): 785-793.

二级参考文献52

  • 1王利峰,孟庆欣.随机利率下有违约风险的最优投资组合[J].复旦学报(自然科学版),2005,44(3):382-387. 被引量:8
  • 2Duffee G R.Term premia and interest rate forecasts in affine models[J].Journal of Finance,2002,57(1):405-443.
  • 3Duarte J.Evaluating an alternative risk preference in affine term structure models[J].Review of Financial Studies,2004,17(2):379-404.
  • 4Cheridito P,Filipovic D,Kimmel R L.Market price of risk specifications for affine models:Theory and evidence[J].Journal of Financial Economics,2007,83(1),123-170.
  • 5Duffie D,Kan R.A yield factor model of interest rates[J].Mathematical Finance,1996,6(4):379-406.
  • 6Fisher M,Gilles C.Estimating Exponential Affine Models of the Term Structure[R].New York:Federal Reserve Board,1996.
  • 7Chen R R,Scott L.Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates[J].Journal of Fixed Income,1993,3(3):14-31.
  • 8Dai Q,Singleton K J.Specification analysis of affine term structure models[J].Journal of Finance,2000,55(5):1943-1978.
  • 9Jong F D.Time series and cross section information in affine term structure models[J].American Statistical Associaltion Journal of Business & Economic Statistics,2000,18(3):300-314.
  • 10Lamoureux C G,Witte H D.Empirical analysis of the yield curve:The information in the data viewed through the window of cox,ingersoll,and ross[J].Journal of Finance,2002,57(3):1479-1520.

共引文献40

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部