期刊文献+

求解互补约束优化问题的乘子松弛法 被引量:1

A multiplier relaxation method for solving mathematical programs with complementarity constraints
下载PDF
导出
摘要 利用互补问题的Lagrange函数,给出了互补约束优化问题(MPCC)的一种新松弛问题.在较弱的条件下,新松弛问题满足线性独立约束规范.在此基础上,提出了求解互补约束优化问题的乘子松弛法.在MPCC-LICQ条件下,松弛问题稳定点的任何聚点都是MPCC的M-稳定点.无需二阶必要条件,只在ULSC条件下,就可保证聚点是MPCC的B-稳定点.另外,给出了算法收敛于B-稳定点的新条件. By using the Lagrange function of the complementarity problem, a new relaxed problem of MPCC is given. We show that the linear independence constraint qualification holds for the new relaxed problem under some mild conditions. Based on this, a multiplier relaxed method for solving MPCC is presented. The limited point of stationary points of the relaxed problems is M-stationary point under the MPCC-LICQ. Without requiring the second-order necessary condition, the limited point is B-stationary point if the ULSC holds. At last, we propose a new condition for convergence to B- stationary point.
出处 《运筹学学报》 CSCD 北大核心 2014年第4期119-130,共12页 Operations Research Transactions
基金 国家自然科学基金(No.11261033) 内蒙古大学高层次人才引进科研启动基金(No.210143)
关键词 互补约束优化问题 LAGRANGE函数 上水平严格互补 B-稳定点 mathematical programs with complementarity constraints, Lagrangefunction, upper lever strict complementarity, B-stationary point
  • 相关文献

参考文献20

  • 1Luo Z Q,Pang J S,Ralph D.Mathematical Programs with Equilibrium Contraints[M].Cambridge:Cambridge University Press,1996.
  • 2Outrata J,Kocvara M,Zowe J.Nonsmooth Approach to Optimization Problems with Equilibrium Constraints:Theory,Applications and Numerical Results[M].New York:Kluwer Academic Publisher,1998.
  • 3Fukushima M,Lin G H.Smoothing methods for mathematical programs with equilibrium constraints[J].Proceedings of Informatics Research for Development of Knowledge Society Infrastructure,2004,206-213.
  • 4Chen Y,Florian M.The nonlinear bilevel programming problem:formulations,regularity and optimality conditions[J].Optimization,1995,32:193-209.
  • 5Scholtes S.Convergence properties of a regularization scheme for mathematical programs with complementarity constraints[J].SIAM Journal on Optimization,2001,11:918-936.
  • 6Lin G H,Fukushima M.A modified relaxation scheme for mathematical programs with complementarity constraints[J].Annals of Operations Research,2005,133:63-84.
  • 7Kadrani A,Dussault J P,Benchakroun A.A new regularization scheme for mathematical programs with complementarity constraints[J].SIAM Journal on Optimization,2009,20:78-103.
  • 8Fukushima M,Pang J S.Convergence of a smoothing continuation method for mathematical programs with complementarity constraints,Ill-posed variational problems and regularition techniques[J].Lecture Notes in Economics and Mathematical Systems,1999,477:105-116.
  • 9Facchinei F,Jiang H,Qi L.A smoothing method for mathematical programs with equilibrium constraints[J].Mathematical Programming,1999,85:107-134.
  • 10Hu X M,Ralph D.Convergence of a penalty method for mathematical programs with complementarity constraints[J].Journal of Optimization Theory and Applications,2004,123:365-390.

二级参考文献17

  • 1B Chen,P T Harker. A non-interior-point continuation method for linear complementarity problems[J].SIAM Journal of Matrix Analysis and Applications, 1993,14:1168-1190.
  • 2C Kanzow. Some noninterior continuation methods for linear complementarity problems[J]. SIAM Journal of Matrix Analysis and Applications, 1996,17:851 - 868.
  • 3D Sun, L Qi. On NCP-function[J]. Computational optimization and applications, 1999.13 : 201 - 220.
  • 4A Fischer, H Jiang. Merit functions for complementarity and related problems: A survey[J]. Computational Optimization and Application, 2000,17 : 159 - 182.
  • 5R W Cottle,J S Pang, R E Stone. The linear complementarity problem[M].San Diego,CA: Academic Press, 1990.
  • 6Chen, B. and Harker, P.T. A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl, 1993, 14:1168-1190
  • 7Cottle, R.W, Pang, J.S. and Stone, R.E. The linear complementarity problem. Boston:Academic Press, 1992
  • 8Eckstein, J. and Ferris, M. C. Smooth methods of multipliers for complementarity problems.Math. Programming, 1999, 86:65-90
  • 9Harker, P.T. and Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Programming,1990, 48:161-220
  • 10Isac, G. Complementarity problem. Berlin Heidelberg: Springer-Verlag, 1992

共引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部