期刊文献+

一种改进的极值动力学优化算法

An Improved Optimization Algorithmwith Extremal Dynamics
下载PDF
导出
摘要 针对基本的极值动力学优化算法容易陷入局部最优解、数值寻优能力较差甚至不能寻优等缺点,提出一种带柯西变异的基于种群的极值动力学优化算法。改进后的算法不仅具有局部搜索能力还具有全局搜索能力,同时提高了收敛速度和精确度。 An improved optimization algorithm with extremal dynamics was proposed based on the shortcomings and the insufficiency of classical extremal optimization algorithm, which was easy to fall into local optimal solution, and had poor ability of numerical optimization, sometimes even had no optimal solution.The algorithm was called population-basedextremal optimization algorithm with Cauchy mutation.The improved algorithm not onlyhas the local search ability,but also has the global search ability, and the convergence speed and accuracy were improved.
作者 张千
出处 《农业网络信息》 2014年第11期44-47,50,共5页 Agriculture Network Information
关键词 极值动力学优化算法 种群 柯西变异 extremal dynamics optimization algorithm population Cauchy mutation
  • 相关文献

参考文献4

  • 1P.Bak,K.Sneppen.Punctuated Equilibrium and Criticality in aSimple Model of Evolution.Physical Review Letters,1993,71(24):4083-4086.
  • 2T.P.Runarsson,X.Yao.Stochastic Ranking for Constrained Evo-lutionary Optimization.IEEE Transactions on Evolutionary Com-putation,2000,(4):284-294.
  • 3S.Boettcher,A.G.Percus.External Optimization at the Phase Tran-sition of the 3-Coloring Problen[J].Physical Review E,2004,69(2):1-8.
  • 4罗平,姚立海,杨仕友,倪光正,唐跃进.一种改进的粒子群优化算法[J].江南大学学报(自然科学版),2007,6(5):505-509. 被引量:11

二级参考文献10

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural' Networks.Piscataway,NJ:IEEE Press,1995.
  • 2SHI Y,Eerhart R C.Fuzzy adaptive particle swarm optimization[C]//IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press,2001.
  • 3Ciuprina G,Ioan D,Munteanu I.Use of intelligent-particle swarm optimization in electromagnetics[J].IEEE Trans on Magnetics,2002,38(2):1037-1040.
  • 4Clere M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 5Breaban M,Luchian H.PSO under an adaptive scheme[C]//The 2005 IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2005.
  • 6Robinson J,Yahya R S.Particle swarm optimization in electromagnetics[J].IEEE Trans on Antennas and Propagation,2004,52(2):397-407.
  • 7SHI Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press,1998.
  • 8Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations[C]//The Third Genetic and Evolutionary Computation Conference.San Francisco,CA:Morgan Kaufmann Press,2001.
  • 9Higasshi N,IBA H.Particle swarm optimization with gaussian mutation[C]// IEEE Swarm Intelligence Symposium.Piscataway,NJ:IEEE Press,2003.
  • 10HUANG T,Mohan A S.A hybrid boundary condition for robust particle swarm optimization[J].IEEE Antennas and Wireless Propagation Letters,2005(4):72-79.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部