期刊文献+

基于改进水平集图像分割方法的乳腺超声病灶提取 被引量:3

ULTRASOUND GALACTOPHORE LESION EXTRACTION BASED ON REVISED LEVEL SET IMAGE SEGMENTATION
下载PDF
导出
摘要 准确高效的乳腺超声病灶提取技术具有重要应用价值,但超声图像灰度不均匀、伪影重、噪声强、乳腺病灶区域与周围组织相似度较高等特有属性给自动分割带来很大挑战。RSF模型是一种较为成功的图像分割方法,但对初始轮廓和噪声较敏感,直接用于病灶提取有待改进。针对图像局部分割需求,通过预提取初始分割区域作为水平集的初始条件,有助于提高分割精度;以局部能量为主导,较好地处理灰度不匀的超声特质,增加全局能量项以使零水平集能够更好地定位在弱边界;引入灰度变化率作用以提高轮廓在灰度匀质部分的演化速度。分割实验结果表明,该方法能较为准确地定位乳腺超声病灶,有一定的临床参考价值。 Accurate and efficient ultrasound galactophore lesion segmentation technology has important applied value,but it faces great challenges from intrinsic properties of the ultrasound images including inhomogeneous intensity,severe artifacts,strong noises,and higher similarity between the galactophore lesion area and the normal tissues around it.RSF model is a comparatively successful image segmentation method,but it is sensitive to initial contour and noise,and needs to be revised if applying to lesion extraction directly.Aiming at the demand of partial image segmentation,taking the pre-extracted initial segmentation region for the initial condition of level set will be helpful to improving the segmentation accuracy; dominated with local energy,we deal with well the ultrasound speciality of inhomogeneous intensity,and increase global energy item to locate the zero level set on weak boundary better; we also introduce the function of gray change rate to accelerate the evolution process of contour in homogeneous intensity domain.Experimental results of segmentation show that the proposed method can more accurately locate the ultrasound galactophore lesion,therefore has certain reference value for the clinic.
作者 杨谊 喻德旷
出处 《计算机应用与软件》 CSCD 北大核心 2014年第11期217-221,240,共6页 Computer Applications and Software
基金 广东省科技计划项目(2010B060300001)
关键词 水平集方法 预提取 乳腺超声图像 肿瘤分割 Level set method Pre-extracting Ultrasound galactophore image Tumour segmentation
  • 相关文献

参考文献11

二级参考文献44

  • 1何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 2GULIATO D,RANGAYYAN R M,CARNIELLI W A.Segmentation of breast tumors in mammograms by fuzzy region growing[J].IEEE Engineering in Medicine and Biology Society,1998,20(2):10022-10051.
  • 3CAI X P,CHEN X W,HU L M,et al.Computer-aided detection and classification of microcalcifications in mammograms:A survey[J].Pattern Recognition,2003,36(12):2967-2991.
  • 4PETRICK N,CHAN H P,WEI D,et al.Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification[J].Meal.Phys,1996,23(10):1685-1696.
  • 5CHANG Y H,HARDESTY L A,HARIM C M,et al.Knowledge-based computer-aided detection of masses on digitized mammograms:A preliminary assessment[J].Med.Phys,2001,28(4):455-461.
  • 6TIMP S A,KARSSEMEIJER N.A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography[J].Med.Phys,2004,31(5):958-971.
  • 7KASS M,WITKIN A,TERZOPOULOS D.Snakes:active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 8BALL J E,BRUCE L M.Level set-based core segmentation of mammographic masses facilitating three stage(core,periphery,spiculation)analysis[C].Proceedings of the 29th Annual International Conference of the IEEE EMBS.Lyon,France,2007:819-824.
  • 9CHAN FT,VESE L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 10LI CH M,KAO CH Y,GORE J C,et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Trans.Image Processing,2008,17(10):1940-1949.

共引文献86

同被引文献44

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2王国民,陈伟.泌尿系统肿瘤治疗的进展与展望[J].肿瘤防治研究,2014,41(2):97-101. 被引量:25
  • 3Osher S, Serbian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 4Jalba A C, Vanderlaan W J, Roerdink J B. Fast sparse level sets on graphics hardware[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(1): 30-44.
  • 5Duquette A A, Jodoin P M, Bouchot O. 3D segmentation of abdominal aorta from CT-scan and MR images[J]. Computerized Medical Imaging and Graphics, 2012, 36(4): 294-303.
  • 6Kazerooni A F, Aarabi M H, Mohammadreza A. A fully automated and reproducible level-set segmentation approach for generation of MRbased attenuation correction map of PET images in the brain employing single STE-MR imaging modality[J]. EJNMMI Physics, 2014, 36(1): 48-57.
  • 7Yang X, Gao X B, Tea) D C. An efficient MRF embedded level set method for image segmentation[J]. IEEE Transactions on Image Processing, 2015, 24(1 ): 9-21.
  • 8Gibou F, Min C, Fedkiw R. High resolution sharp computational methods for elliptic and parabolic problems in complex geometries[J]. Journal of Science Computing, 2013, 54(2): 369-413.
  • 9Boumehed M, Alshaqaqi B, Ouamri A. Moving objects localization by local regions based level set: application on urban traffic[J]. Journal of Mathematical Imaging and Vision, 2013, 46(2): 258-274.
  • 10Marchandise E, Remacle J F, Chevangeon N. A quadrature-free discontinuous Galerkin method for the level set equation[J]. Journal of Computational Physics, 2006, 212(1): 338-357.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部