期刊文献+

一种具有记忆特征的改进蝙蝠算法 被引量:6

AN IMPROVED BAT ALGORITHM WITH MEMORY CHARACTERISTIC
下载PDF
导出
摘要 蝙蝠算法(BA)是一种新的群智能优化算法。然而,BA算法的优化性能还不是十分完善,存在易陷入局部最优、早熟收敛等问题。针对BA算法的不足,提出一种具有记忆特征的改进蝙蝠算法,并考虑了由于时变或时滞引起的扰动问题。该算法中蝙蝠的前期搜索经验对后期搜索提供支持。实验结果表明,该算法具有较好的全局搜索能力和较快的收敛速度,能有效地克服早熟收敛问题。 Bat algorithm( BA) is a new swarm intelligence optimisation algorithm.However,its optimisation performance still has some insufficiencies.BA algorithm has the phenomena of premature convergence and being easily fallen into local optimum.An improved bat algorithmwith memory characteristic( MCBA) is proposed for improving these disadvantages,and the disturbance problems which are caused by time-variant or time-delay are also discussed.In this algorithm the search experience gained in earlier stage supports the searches in later stage.Experimental results show that the improved BA has better global search ability and a faster convergence speed,and can effectively overcome the problem of premature convergence.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第11期257-259,329,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61074185) 广西自然科学基金项目(0832084) 广西高等学校科研项目(201202ZD032)
关键词 蝙蝠算法 记忆特征 扰动 Bat algorithm Memory characteristic Disturbance
  • 相关文献

参考文献11

  • 1Krishnanand K N, Ghose D. Glowworm swarm optimization for searching higher dimensional spaces [ J ]. Studies in Computational Intelligence, 2009,248 (2009) :61 - 75.
  • 2Alatas B. Acma:Artificial chemical reaction optimization algorithm for global optimization [ J ]. Expert Systems with Applications, 2011,38 (10) ,13170 - 13180.
  • 3Oftadeh R, Mahjoob M J, Shariatpanahi M. A novel meta-heuristic optimizationalgorithm inspired by Group Hunt-ing of Animals : Hunting Search[ J]. Computers & Mathematics with Applications, 2010, 60 (7) :2087-2098.
  • 4Alatas B. Chaotic harmony search algorithms[J]. Applied Mathematics and Computation ,2010,216 (9) ,2687 - 2699.
  • 5何宗耀,郝伟.一种新颖的改进自适应和声算法[J].计算机应用与软件,2012,29(9):268-270. 被引量:5
  • 6Yang X S. Firefly algorithms for multimodal optimization [ C ]//Pro- ceeding SAGA 09 Proceedings of the 5th international conference on Stochasticalgorithms : foundations and applications ,2009 : 169 - 178.
  • 7Gandomi A H, Yang X S, Alavi A H, et al. Bat algorithm for constrained optimization [ J ]. Neural Computing and Applications,2012 : 1 - 17.
  • 8Zhao R Q, Tang W S. Monkey algorithm for global numerical optimiza- tion [ J ]. Journal of Uncertain Systems ,2008 (2) : 165 - 176.
  • 9陈建荣,王勇.采用捕鱼策略的优化方法[J].计算机工程与应用,2009,45(9):53-56. 被引量:19
  • 10Yang Xinshe, Deb S. Cuckoo search via Levy flights [ C ]// Proc. of World Congress on Nature and Biologically Inspired Computing,2009: 210 -214.

二级参考文献13

  • 1Holland J H.Adaptation in Nature and Artificial Systems[M].[S.l.]: MIT Press, 1992.
  • 2Kennedy J,Eberhart R C,Shi Y.Swarm intelligenee[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 3Theraulaz G,Bonabeau E, Deneubourg J L.Self-organization of hierarchies in animal societies:The case of the primitively eusocial wasp polistes dominulus christ[J]Journal of Theoretical Biology,1995, 174:313-323.
  • 4Theraulaz G, Bonabeau E, Deneubourg J L.Response threshold reinforcement and division of labour in insect societies[C]//Proceedings of the Royal Society of London B,1998,265:327-335.
  • 5Eusuffm M,Lansey K E.Optimization of water distribution network design using shuffled frog leaping algorithm[J].Joumal of Water Resources Planning and Management,2003,129(3):210-225.
  • 6Geem Z W, Kim J H. A new heuristic optimization algorithm : harmony search[J]. Simulation, 2001,76(2) : 60-68.
  • 7Mahdavi M,Fesanghary M,Damangir E. An improved.harmony search algorithm for solving optimization problems [ J]. Applied Mathematics and Computation,2007, 188 (2) : 1567 - 1579.
  • 8Pan Q K,Suganthan PN ,Tasgetiren M F, et al. A self-adaptive global best harmony search algorithm for continuous optimization problems [J]. Applied Mathematics and Computation,2010, 216 (3): 830 - 848.
  • 9Wang C M, Huang Y F. Self-adaptive harmony search algorithm for op- timization[ J]. Expert Systems with Applications, 2010,37 (4) : 2826 - 2837.
  • 10Omran M G H, Mahdavi M. Global-best harmony search [ J ]. Applied Mathematics and Computation, 2008, 198 (2) : 643 - 656.

共引文献22

同被引文献44

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部