期刊文献+

不同植物及其组合配置对水体脱氮和氮循环微生物的影响 被引量:2

Effects of Plant Configuration on Water Denitrification and Nitrogen Cycling Microorganisms
下载PDF
导出
摘要 为探明富营养化水体中植物的脱氮效应及其作用机制,采用室内模拟试验,研究了不同植物及其组合配置对不同形态氮的去除、基质中微生物数量及其脱氮功能的影响,探讨了其与水质净化效果的相关性。结果表明:1)TN的去除效果,单一植物处理,HCP对TN去除效果最好(达68.71%),CP效果最差(仅50.48%);植物组合处理,MRJ+CP和MRJ+HCP对TN去除效果较好,HCP+CP+MRJ效果次之,CP+HCP的效果最差;各植物处理系统中TN的去除率依次为HCP>MRJ+CP>MRJ>HCP+MRJ>HCP+CP+MRJ>CP>CP+HCP>CK。2)NH4+的去除效果,单一植物处理,HCP和MRJ处理的NH4+去除效果最好、去除率分别为64.84%和59.17%,CP效果最差、仅46.50%;植物组合处理,MRJ+CP对NH4+去除效果最好,MRJ+HCP和HCP+CP+MRJ对NH4+去除效果次之,CP+HCP最差;各植物处理对污水中NH4+的去除率依次为HCP>MRJ+CP>MRJ>HCP+MRJ>HCP+CP+MRJ>CP>CP+HCP>CK。3)NO3-的去除效果,单一植物处理,HCP对NO3-去除效果最好(达64.47%),CP效果最差(仅47.60%);植物组合处理中,CP+HCP对NO3-去除效果最好(达71.06%),HCP+MRJ+CP最差(仅47.41%);各植物处理对污水中NO3-的去除率依次为CP+HCP>HCP+MRJ>HCP>MRJ+CP>MRJ>CP>HCP+MRJ+CP>CK。4)植物及其配置调控着氮循环微生物的数量和活性,不同系统的硝化强度、反硝化强度、微生物数量不同,进而导致了净化效果的不同。硝化强度和亚硝酸细菌数量与NH4+去除率间有显著关系(P<0.05),而反硝化强度、反硝化细菌数量和TN去除率间相关性不显著(P<0.05)。 To explore the denitrifieation effect and the action mechanism of plants in eutrophic water, an indoor simulation test was carried out to investigate the effects of plant configuration on removal of different forms of nitrogen, microbial population in the substrate and the denitrification function and the relationship with water quality purification. Results: 1) In single plant treatments HCP had the best effect with TN removal rate of 68.71% and CP had the worst effect with that of 50.48%3 In plant combination treatments MRJ+CP and MRJ+HCP had better effects, followed by HCP+CP+MRJ, and CP+HCP was the worst one. The sequence was HCP〉MRJ+CP〉MRJ〉HCP+MRJ〉HCP+CP+MRJ〉CP〉CP +HCP〉CK. 2) In single plant treatments HCP and MRJ had the highest NH4^+ removal rate, respectively 64.84% and 59.17% CP was the lowest, merely 46.50%. In plant combination treatments MRJ+CP had the highest N H4 + removal rate, followed by MRJ+HCP and HCP+CP+MRJ, CP+HCP was the worst one. The sequence was HCP〉MRJ+CP〉MRJ〉HCP+MRJ〉HCP+CP+MRJ〉CP〉CP+HCP〉CK. 3) In single plant treatments HCP had the highest NO3^--removal rate(64.47%) and CP had the worst NO3^--removal rate(47. 60%). In plant combination treatments CP+HCP was the best one (71.06%) and HCP+MRJ+CP was the worst one(47.41%). The sequence was CP+HCP〉HCP+MRJ 〉HCP〉MRJ+CP〉MRJ〉CP〉HCP+MRJ+CP〉CK. 4) Plant configuration controlled the quantity and activity of nitrogen cycling microorganisms, the various nitrifying capacity, denitrifying capacity and microorganism quantity in different systems caused the different purifying effects. Nitrifying capacity and nitrite bacteria amount significantly correlated with NH4^+ removal rate, while denitrifying capacity and denitrifying bacteria amount had no significant correlation with TN removal rate.
出处 《贵州农业科学》 CAS 北大核心 2014年第11期226-231,共6页 Guizhou Agricultural Sciences
基金 国家科技支撑计划项目"草海湿地生态系统恢复与重建关键技术研究与示范"(2011BAC02B02) 贵州省科技计划项目"贵州清镇面源污染农田溪流生态阻控技术研究与示范"(SY20123016) "微生物强化湿地脱氮关键技术研究与示范"(SY20133136) 贵州省自然科学基金项目"人工湿地植物氮磷的吸收 积累及分配规律研究"(J20132025)
关键词 水生植物 水体脱氮 微生物 硝化/反硝化作用 aquatic plants water denitrification microorganism nitrification/denitrification
  • 相关文献

参考文献25

二级参考文献227

共引文献1005

同被引文献59

  • 1付融冰,杨海真,顾国维,张政.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44-49. 被引量:91
  • 2丁浩,凌云,徐亚同,米文秀.梦清园芦苇湿地根际微生物特性研究[J].四川环境,2007,26(2):6-10. 被引量:12
  • 3殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展[J].环境科学与技术,2007,30(1):108-110. 被引量:39
  • 4Stottmeister U, Wiessner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances,2003,22(1-2):93-117.
  • 5Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience [J].Ecological Engineering,2002,18 (5): 633 -646.
  • 6Calheiros C S C, Teixeira A, Pires C, et al. Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing [J].Water Research,2010,44( 17):5032-5038.
  • 7Calheiros C S C, Rangel A, Castro P M L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater [J].Water Research,2007,41 (8): 1790-1798.
  • 8Strand J A, Weisner S E B. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape-Experiences from Sweden [J].Ecological Engineering, 2013,56:14-25.
  • 9Meng P P, Pei H Y, Hu W R, et al. How to increase microbialdegradation in constructed improvement measures 316-326 wetlands: Influencing factors and ].Bioresource Technology,2014,157:.
  • 10Hu Y S, Zhao Y Q, Zhao X H, et al. Highrate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland [J]. Environmental Science & Technology,2012,46(8):4583-4590.

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部