期刊文献+

固硫灰基地聚合物固化含铬污泥 被引量:4

Immobilization of Sludge with CFBC Ash-based Geopolymer
下载PDF
导出
摘要 在研究水玻璃模数、水玻璃添加量、偏高岭土掺量对固硫灰基地聚合物抗压强度影响的基础上,进一步探讨了固硫灰基地聚合物固化含铬污泥的性能及机制。固硫灰制备地聚合物的优化实验参数为:水玻璃模数M为2.5,水玻璃掺比为33.3%,偏高岭土掺比为20%。含铬污泥最大固化量为52%,固化体28 d抗压强度达到6.5 MPa,总铬及Cr(VI)浸出量分别为0.37 mg/L和5.93×10-3 mg/L,远低于GB 5085.3-2007标准限值。XRD和SEM/EDS分析表明含铬污泥及其固化体均为无定形态,污泥中的铬可能以物理包裹的形式被固化于地聚合物凝胶相中。IR分析表明铬元素可能通过化学键的形式进入地聚合物的三维网络结构实现固化。 The effects of modulus and quantity of sodium silicate, content of metakaolinite on the compressive strength of CFBC ash-based geopolymer was explored. At the same time, the property and mechanism of geopolymer solidifying chromium in sludge was investigated. That the modulus of sodium silicate was 2.5, quantity of sodium silicate was 33.3% and content of metakaolinite was 20% were the optimum parameters to prepare CFBC ash-based geopolymer. The content of sludge in solidified body was up to 52% and the compressive strength of solidified body which had been cured under normal temperature up to 6.5 MPa eventually. At the same time the leaching amount of total chromium and hexavalent chromium were far below the national standard value(GB 5085.3-2007). XRD and SEM/EDS analysis showed that the sludge and its solidified body were amorphous. The chromium in sludge might be physical encapsulated in the amorphous geopolymer gel. Iinfrared spectrometry(IR) indicated that chromium may be cured through going into the three-dimensional network structure as chemical bonds.
出处 《非金属矿》 CAS CSCD 北大核心 2014年第6期66-69,共4页 Non-Metallic Mines
基金 国家自然科学基金(51274262) 煤矿灾害动力学与控制国家重点实验室开放基金(12zs0104) 四川省科技创新苗子项目(13zd3132) 四川省教育厅青年基金(13ZB0183)
关键词 固硫灰 地聚合物 污泥 固化 CFBC ash geopolymer chromium sludge immobilization
  • 相关文献

参考文献10

  • 1张雁江,李锋锋,郑晓华,王伟,孙志成,张明熹,王传璐,杨文毅,沈毅.电镀污泥的材料化处理技术综述[J].电镀与涂饰,2013,32(12):49-51. 被引量:7
  • 2Li Oin, Sun Zengqing, Tao Dejing. Immobilization of simulated radio- nuclide 133Cs(+) by fly ash-based genpolymer[J]. Journal of h~ardous materials 2013, 262:325-331.
  • 3McLellan B C, Williams R P, Lay Jetc. Costs and carbon emissions lbr geopolymer pastes m comparison to ordinary portland cement[J]. Jour- nal of Cleaner Production. 2011, 0(9/10): 1080-1090.
  • 4Provis J L, Walls PA, Deventer J S J v. Geopolymerisation kinetics. 3. Ef- fects of Cs and Sr salts[J]. Chemical Engineering Science. 2008, 63(18): 4480-4489.
  • 5Lei Zheng, Wang Chengwen, Wang Weitc. hnrnobilization of MSWI fly ash through geopolymerization: Effects of water-wash[J]. Waste Man- agement, 2011, 31(2): 311-317.
  • 6宋远明,钱觉时,王智,汪宏涛.固硫灰渣的微观结构与火山灰反应特性[J].硅酸盐学报,2006,34(12):1542-1546. 被引量:72
  • 7曹德光,苏达根,宋国胜.低模数硅酸钠溶液的结构及其键合反应特性[J].硅酸盐学报,2004,32(8):1036-1039. 被引量:54
  • 8Zhang Zuhua, Wang Hao, Provis J L, et al. Quantitative kinetic and struc- tura analysis of geopolymers. Part I. The activation of metakaolin with sodium hydroxide [J]. Thermochimica Acta, 2012, 539: 23-33.
  • 9Guo Xiaolu, Shi Huisheng. SelSolidification/Stabilization of Heavy Metal Wastes of Class C Fly Ash-Based Geopolymers[J]. Journal of Ma- terials in Civil Engineering, 2013, 25(4): 491-496.
  • 10郭晓潞,施惠生.高钙粉煤灰地聚合物固化/稳定重金属离子研究[J].建筑材料学报,2012,15(6):751-754. 被引量:11

二级参考文献56

共引文献139

同被引文献42

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部