期刊文献+

基于ELM和MA的微型四频天线设计 被引量:2

A Miniature Four-Band Antenna Design Using ELM and MA
下载PDF
导出
摘要 提出一个基于极限学习机ELM(Extreme Learning Machine)和文化基因算法MA(Memetic Algorithm)的微型四频(0.92/2.4/3.5/5.8GHz)天线设计算法AntMA-ELM.为了提高天线的性能,算法在MA框架下引入基于综合学习粒子群优化算法CLPSO(Comprehensive Learning Particle Swarm Optimizer)全局搜索和DSCG(Davies,Swann,and Campey with Gram-schmidt)局部搜索,用于确定天线的几何参数.同时,建立ELM回归模型用于直接评估MA优化的适应值函数.实验结果表明,ELM回归模型能够根据输入参数正确估算天线的回波损耗,使MA算法有效提高设计性能和加速优化过程.天线在四个目标频段的回波损耗值均优于-10dB,满足设计要求. This paper proposes an extreme learning machine (ELM) and memetic algorithm (MA) based miniature four-band (0.92/2.4/3.5/5.8GHz ) antenna design algorithm namely the AntMA-ELM .It combines a comprehensive learning particle swarm optimizer (CLPSO ) based global search and a DSCG (Davies ,Swann ,and Campey with Gram-schmidt ) orthogonalization based local search in the MA framework to form a novel optimization algorithm for the geometrical parameters selection of the an-tenna .An ELM based regression model is introduced to estimate antenna performance ,and accelerate the search speed .Experimental results show that the AntMA-ELM obtains promising performance with short computational time .Particularly ,the return losses at all targeted frequency bands are smaller than -10dB .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1693-1698,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171125 No.60872125 No.61201042) 深圳市海外高层次人才创新创业专项资金(No.KQC201108300044A) 深圳市战略性新兴产业发展专项资金项目(No.JCYJ20120613173154123) 国家-广东省联合自然科学基金(No.U1201256)
关键词 四频天线 回波损耗 极限学习机 文化基因算法 综合学习粒子群优化算法 four-band antenna return loss extreme learning machine memetic algorithm CLPSO
  • 相关文献

参考文献15

  • 1叶亮华,褚庆昕.一种小型的具有良好陷波特性的超宽带缝隙天线[J].电子学报,2010,38(12):2862-2866. 被引量:25
  • 2ROBINSON J,et al. Particle swarm optimization in eleetromag- netics [J]. IEEE Transactions on Antennas and Propagation, 2004,52(2) :397 - 407.
  • 3ROGOVICH A, MARASINI C,et al. Design of wire antennas by using an evolved particle swarm optimization algorithm[ A]. Roberto D G. International Conference on Electromagnetics in Advanced Applications[ C]. Torino: COREP, 2007.199 - 202.
  • 4CHUNG Y C,ZAHARIS Z D,et al.2.4 GHz Yagi-Uda RFID tag antenna design with low back-lobe using genetic algorithm [ A ]. IEEE Radio and Wireless Symposium [ C ]. Orelando: IEEE. M1T-S ,2008,475 - 478.
  • 5GOUDOS S K, et al. Pareto optimal design of dual-band base station antenna arrays using multi-objective particle swarm opti- mization with fitness sharing[ J]. IEEE Transactiom on Magnet- ics,2009,45(3) : 1522 - 1525.
  • 6JIN N,RAHMAT S Y.Hybdd real-binary particle swarm opti- mization (HPSO) in engineering electromagnetics [ J ]. IEEE Transactions on Antennas and Propagation, 2010,58 (12) : 3786 - 3794.
  • 7HUANG G B, ZHOU H, et al. Extreme learning machine for regression and mulficlass classification [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42 (2):513-529.
  • 8NERI F, C(TI'FA C, et al. Handlxok of Memetic Algorithms [M]. Germany: Springer,2011.152 - 155.
  • 9LIANG J J, QIN A K, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal func- tions [ J ]. IEEE Transactions on Evolutionary Computation, 2006,10 (3) :281 - 295.
  • 10NGUYEN Q H, ONG Y S, et al. A probabilistic memetic framework[ J]. IEEE Transactions on Evolutionary Computa- tion,2009,13(3) :604 - 623.

二级参考文献31

  • 1梁仙灵,钟顺时,汪伟.高隔离度双极化微带天线直线阵的设计[J].电子学报,2005,33(3):553-555. 被引量:19
  • 2程勇,吕文俊,程崇虎,曹伟.一种小型平面超宽带天线的设计与研究[J].电波科学学报,2006,21(4):582-585. 被引量:27
  • 3程勇,吕文俊,程崇虎,曹伟.一种小型陷波多用途超宽带天线[J].微波学报,2007,23(1):20-24. 被引量:11
  • 4Kennedy J, Eberhart R C. Particle swarm optimization// Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 5Shi Y, Eberhart R C. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 1011-106.
  • 7Clerc M. The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization//Proceedings of the Congress on Evolutionary Computation, 1999: 1951-1957.
  • 8Corne D, Dorigo M, Glover F. New Ideas in Optimization. McGraw Hill, 1999:379-387.
  • 9Angeline P J. Using selection to improve particle swarm optimization//Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89.
  • 10Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences//Proceedings of the 7th Annual Conference on Evolutionary Programming. Germany, 1998:601-610.

共引文献92

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部