期刊文献+

对象引导的单幅散焦图像深度提取方法 被引量:5

Object Guided Depth Map Recovery from a Single Defocused Image
下载PDF
导出
摘要 2D图像转3D图像是解决3D影视内容缺乏的主要手段之一,而深度提取是其中的关键步骤.考虑到影视作品中存在大量散焦图像,提出单幅散焦图像深度估计的方法:首先通过高斯卷积将散焦图像转换成两幅模糊程度不同的图像;其次计算这两幅图像在边缘处的梯度幅值比例,进而根据阶跃信号与镜头的卷积模型得到边缘处的模糊度;再次将边缘处的模糊度转换成图像的稀疏深度并利用拉普拉斯矩阵插值得到稠密深度图;最后通过图像的视觉显著度提取前景对象,建立对象引导的深度图优化能量模型,使前景的深度趋于一致并平滑梯度较小区域的深度.该方法利用对象引导的深度优化,剔除了拉普拉斯矩阵插值引入深度图的纹理信息.模拟图像的峰值信噪比和真实图像的视觉对比均表明该算法比现有方法有较大改善. 2D-to-3D conversion is a feasible solution to the problem of 3D-content deficiency.In the conversion,depth extraction from a single 2D image is the key step.We propose a depth estimation method based on edge-gradients ratio and object-guided energy model.First,w e obtain tw o blurred images from the input defocused image via Gaussian smoothing using tw o different kernels.Then,w e estimate the sparse depth map generated from the gradients ratio at edge locations in the tw o blurred images.Next,w e recover the full depth map from the sparse depth map by matting Laplacian interpolation.Objects are then extracted from the input image by adaptive threshold binary segmentation on its visual saliency map.Finally,the refined depth map is obtained through object-guided depth filtering.Synthetic and real images experimental results both show that our algorithm is superior to the existing methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第10期2009-2015,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071173) 浙江省自然科学基金(No.LY12F01001 No.LQ12D01001 No.LQ12F03001) 宁波市自然科学基金(No.2012A610043 No.2012A610048 No.2011A610186) 浙江省教育厅科研项目(No.Y201431834)
关键词 2D转3D 散焦图 深度图 视觉显著度 深度图优化 2D-to-3D defocused image depth map visual saliency depth refinement
  • 相关文献

参考文献18

二级参考文献91

  • 1张淑芳,李华.基于一幅散焦图像的深度估计新算法[J].光电子.激光,2006,17(3):364-367. 被引量:6
  • 2盛琳阳,解凯,张田文.超分辨率图像复原中的快速L-曲线估计[J].小型微型计算机系统,2006,27(6):1120-1123. 被引量:5
  • 3张斌,宋旸,贺安之.光偏折层析的Tikhonov正则化重建技术[J].光学学报,2007,27(5):853-858. 被引量:5
  • 4Pentland A P.A new sense for depth of field[J].IEEE Trans on PAMI, 1987,9(4) :523-531.
  • 5Ens J,Lawrence P.An investigation of methods for determining depth from foeus[J].IEEE Trans PAMI, 1993,15 (2) : 97-107.
  • 6Ziou D,Deschenes F.Depth from defocus estimation in spatial domain[J].Computer Vision and Image Understanding, 2001,81 (2) : 143-165.
  • 7Ens J,Lawrence P.An investigalion of methods for determining depth from foeus[J].IEEE PAMI, 1993,15 ( 2 ) : 97-108.
  • 8Favaro P,Soatto S.A geometric approach to shape from defocus[J]. IEEE Trans Pattern Anal Mach Intell, 2005,27(3) :406-417.
  • 9Lou Yi-fei,Favaro P,Soatto S.Autocalibration and uncalibrated reconstruction of shape from defocus[C]//IEEE Conference on Computer Vision and Pattern Recognition,2007,CVPR'07,2007.
  • 10Subbarao M,Wei T.Depth from defocusing and rapid auto-focusing:A practical approach[C]//Proce IEEE Intl Conf on Computer Vision Pattern Recognition, Champaign, Illinois, 1992:773-776.

共引文献25

同被引文献17

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部