期刊文献+

一种目标特性辅助的积分粒子滤波新方法 被引量:1

A Novel Auxiliary Quadrature Particle Filtering Algorithm Based on Target Characteristic
下载PDF
导出
摘要 针对非均匀稀疏采样环境下目标跟踪中的非线性滤波问题,提出了一种基于Gauss-Hermite积分和目标特性辅助的积分粒子滤波新方法(AQPF).在该方法中,构建了基于Gauss-Hermite积分的积分点概率密度函数作为重要性密度函数,同时,在时间更新阶段引入目标观测、目标观测的有效时间间隔、目标速度等目标特性,综合改善滤波器中预测粒子和预测协方差估计的准确性和粒子的多样性,有效提高目标状态的估计性能.实验结果表明,提出方法的估计性能要明显好于无迹kalman滤波(UKF)、积分kalman滤波(QKF)、粒子滤波(PF)、辅助粒子滤波(APF)和高斯粒子滤波(GPF),能够有效对目标状态进行估计. For the nonlinear filtering problem of target tracking in aperiodic sparseness sampling environment,a novel auxiliary quadrature particle filter( AQPF) based on Gauss-Hermite quadrature and target characteristics is proposed.In the proposed algorithm,a set of quadrature point probability densities based on the Gauss-Hermite quadrature is proposed to approximate the important density function.At the same time,the proposed algorithm can incorporate target observation,time interval of the target observation and the target speed into the construction of important density function,which can effectively enhance the diversity of samples and improve the performance.Finally,the experimental results show that the performance of the proposed algorithm is better than these of the unscented Kalman filter( UKF),quadrature Kalman filter( QKF),particle filter( PF),auxiliary particle filtering( APF) and Gaussian particle filter( GPF),and can effectively estimate the target states.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第10期2069-2074,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61301074 No.61271107) 高等学校博士学科点专项科研基金(No.201044081200010 No.20124408110002) 广东省自然科学基金(No.S2012010009417) 国家科技支撑计划重大项目(No.2011BAH24B12) 深圳市科技计划项目(No.JCYJ20130329105816574)
关键词 非均匀稀疏采样 Gauss-Hermite积分 积分粒子滤波 目标特性 aperiodic sparseness sampling Gauss-Hermite quadrature quadrature particle filtering target characteristic
  • 相关文献

参考文献9

  • 1S J Julier, J K Uhlmann. Unscented filtering and nonlinear esfi- marion[J] .Proceedings of IEEE, 2004,92(3) :401 - 422.
  • 2F Gustafsson, G Hendeby. Some relations between extended and unscented Kalman filters[J] .IEEE Transactions on Signal Pro- cessing,2012,60(2) :545 - 555.
  • 3Ienkaran A, Simon H. Discrete-time nonlinear filtering algo- rithms using Gauss-Hermit quadrature [J]. Proceedings of IEEE, 2007,95 (5) :953 - 976.
  • 4Angel F Garcia-Fem(mdez, Mark R Morelande, Jestis Grajal. Truncated unscented Kalman filtering[J].IEEE Transactions on Signal Processing, 2012,60 (7) : 3372 - 3386.
  • 5Li Liang-qun, Xie Wei-xin, Huang Jing-xiong, Huang Jian-jun. Multiplemodel Rao-blackwellizext particle filter for maneuvering target tracking [J]. International Journal of Defence Science, 2009,59(3) :197 - 204.
  • 6Ondrej Hlinka, Franz Hlawatsch, et al. Distributed particle fil- tering in agent networks[J]. IEEE Signal Processing Magazine, 2013,30(1) :61 - 81.
  • 7J H Kotecha,P M Djuric. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing,2003,51 (10):2592- 2601.
  • 8李倩,姬红兵,郭辉.拟蒙特卡罗-高斯粒子滤波算法研究及其硬件实现[J].电子与信息学报,2010,32(7):1737-1741. 被引量:5
  • 9李良群,谢维信,黄敬雄,廖桂生.非均匀稀疏采样环境自适应α-β滤波算法[J].系统仿真学报,2009,21(16):5138-5140. 被引量:5

二级参考文献15

  • 1刘宗香 ,谢维信 ,杨烜 ,黄敬雄 .分布式被动传感器网异步采样下的机动目标跟踪[J].系统仿真学报,2005,17(6):1441-1444. 被引量:2
  • 2Bar_Shalom Y, LI X. Multitarget_Multisensor tracking: Principles and Techniques [M]. Storrs, CT, USA: YBS Publishing, 1995.
  • 3Kalata P R. The T rack ing Index: A Generalized Parameter for α-β and α-β-λ. Target Trackers [J]. IEEE Trans AES (S0018-9251), 1984, 20 (2): 174-182.
  • 4Jae-Chem Yoo, Young-Soo Kim. Alpha-beta-tracking index (α-β-A) tracking filter [J]. Signal Processing (S0165-1684), 2003, 83(1): 169-180.
  • 5Yardim C, Gerstoft P, and Hodgkiss W S. Tracking refractivity from clutter using Kalman and particle filters. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1058-1070.
  • 6Kotecha J H and Djuric P M. Gaussian particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
  • 7Bolic M, Athalye A, Djuric P M, and Hong S. Algorithmic modification of particle filters for hardware implementation. Proc. of the European Signal Processing. Conference, Vienna, Austria, 2004: 1641-1646.
  • 8Lin G H, Xu H F, and Masao F. Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints. Mathematical Methods o/Operations Research, 2008, 67(3): 423-441.
  • 9Wu Y X, Hu X P, and Hu D W. Comments on Gaussian Particle Filtering. IEEE Transactions on Signal Processing, 2005, 53(8): 3350-3351.
  • 10Wolfgang J. Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM. Computational Statistics & Data Analysis, 2005, 48(4): 685-701.

共引文献8

同被引文献15

  • 1Vemmak J, Godsill S J,Perez P.Monte Carlo filtering for mul- ti-target tracking and data association[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41 ( 1 ) : 309 - 331.
  • 2Mahler R. Statistical Multisource-Multitarget Information Fusion [ M]. Norwood, MA: Artech House, 2007. 565 - 651.
  • 3Fotlnmnn T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association [ J ]. [FEE Journal of Oceanic Engineering, 1983,8(3 ) : 173 - 184.
  • 4Blackman S. Multiple hypothesis tracking for multiple target tracking[ J ].IEEE Aerospace and Electronic Systems Maga- zine,2004,19(1) :5 - 18.
  • 5Mahler R. Multitarget Bayes filtering via first-order mulfitarget moments[ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39 ( 4 ) : 1152 - 1178.
  • 6Vo B N,Doucet S S. Sequential Monte Carlo methods for mul- ti-target filtering with random finite sets[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 ( 4 ) : 1224 - 1245.
  • 7Ouyang C,Ji H B,Guo Z Q. Extensions of the SMC-PHD for jump Markov systems[ J]. Signal Processing, 2012,92 (6) : 1422 - 1430.
  • 8Vo B N,Ma W K. The Gaussian mixture probability hypothesis density filter [ J ]. IEEE Transactions on Signal Processing, 2006,54(11) :4091 -4104.
  • 9Wang Y,Jing Z L,Hu S Q, et al. Detection-guided multi-tar- get Bayesian filter[J]. Signal Processing, 2012, 92(2) : 564 - 574.
  • 10Liu Z X, Xie W X, Wang P, et al. A sequential GM-based PHD filter for a linear Gaussian system[ J]. Sci China Inf Sci, 2013,56(10) : 102302_ 1-102302_ 10.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部