期刊文献+

基于关键区域特征匹配的视觉跟踪算法 被引量:6

Visual Tracking Algorithm Based on Feature Matching of Key Regions
下载PDF
导出
摘要 针对视觉跟踪中目标表观的复杂变化问题,提出了一种基于关键区域特征匹配的鲁棒跟踪算法.首先对目标模板进行初始化并通过滤波预测得到目标候选;然后采用自适应标记分水岭算法对目标模板和目标候选进行分割以提取关键区域,并利用像素的空间和频率分布特性对关键区域进行多重特征描述;最后通过关键区域的特征匹配得到目标模板与目标候选的匹配关系,由此确定最终跟踪结果并进行模板更新.对目标发生尺度、遮挡、旋转、光照、姿态、复杂背景以及运动模糊等变化的视频序列进行了仿真测试.实验结果表明,所提算法能够有效处理目标表观的复杂变化问题,尤其对目标的部分遮挡、光照变化以及复杂背景等具有较强的鲁棒性. In order to cope with the complex variation of target appearance during visual tracking,a robust tracking algorithm based on feature matching of key regions is proposed. Firstly,it initializes the target model and obtains target candidate through filter prediction. Then,it extracts the key regions of target model and target candidate using adaptive marker-based watershed algorithm and describes them with multiple features. Finally,it matches the key regions to get the mapping from target model to target candidate and calculates the final tracking results to output and update the target model. The proposed algorithm is tested on the video database containing the appearance variation of scale,occlusion,rotation,illumination,pose,background clutters,and motion blur. The experimental results demonstrate that the proposed algorithm can well cope with the complex appearance variation,especially shows the robustness to the partial occlusion,illumination and background clutters.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2150-2156,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61175029)
关键词 视觉跟踪 区域分割 区域匹配 标记分水岭 visual tracking region segmentation region matching marker-based watershed
  • 相关文献

参考文献10

  • 1DComaniciu, et al. Kernel-based object tracking [ J ]. 1EEE Transactions on Pattern Analysis and Machine Intelligence. 2003,25(5) :564 - 577.
  • 2AAdam, et al. Robust fragment-based tracking using integral histogram[ A]. In: Proceedings of the 21 st IEEE. Conference on Computer Vision and Pattern Recognition [ C ]. New York, USA, IEEE Press, 2008.798 - 805.
  • 3HGrabner, et al. Real-time tracking via online boosting[ A]. In: Proceedings of British Machine Vision Conference[ C ]. Edin- burgh, UK, BMVA Press,2006.47- 56.
  • 4BBabenko, et al. Robust object tracking with online multiple in- stance learning[ J]. IEEE Transactions on Pattern Analysis and Machine InteUigence. 2011,33(8) : 1619 - 1632.
  • 5RYao,et al.Part-based visual tracking with online latent struc- tural leaming[A]. In:Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition[ C ]. Portland, USA, IEEE Press,2013. 2363 - 2370.
  • 6蔺海峰,马宇峰,宋涛.基于SIFT特征目标跟踪算法研究[J].自动化学报,2010,36(8):1204-1208. 被引量:71
  • 7刘玉,王敬东,李鹏.一种基于SIFT和KLT相结合的特征点跟踪方法研究[J].宇航学报,2011,32(7):1618-1625. 被引量:20
  • 8BFeng, et al. Tracking object by combining particle filters and SIFT features[ A] .In:Proceedings of the 5th International Con- ference on Image and Graphics[ C] .Xi' an, China, IEEE Press, 2009.527 - 532.
  • 9HZhou, et al. Object tracking using SIFT features and mean shift[ J]. Computer Vision and Image Understanding. 2009,113 (3) :345 - 352.
  • 10余旺盛,侯志强,宋建军.基于标记分水岭和区域合并的彩色图像分割[J].电子学报,2011,39(5):1007-1012. 被引量:41

二级参考文献23

  • 1高丽,杨树元,夏杰,王诗俊,梁军利,李海强.基于标记的Watershed图像分割新算法[J].电子学报,2006,34(11):2018-2023. 被引量:34
  • 2Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 4Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433.
  • 5Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352.
  • 6Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
  • 7Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 8Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157.
  • 10L Vincent, P Soille. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1991, 13 (6) :583 - 598.

共引文献128

同被引文献63

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2郭文强,高晓光,侯勇严.基于卡尔曼预测算法的云台三维空间目标跟踪[J].陕西科技大学学报(自然科学版),2007,25(3):89-92. 被引量:1
  • 3Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 4Elhamifar E, Vidal R. Sparse subspace clustering: Mgo- rithm, theory, and applications. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2013, 35(11): 2765 -2781.
  • 5Vidal R, Favaro P. Low rank subspace clustering (LRSC) Pattern Recognition Letters, 2014, 43:47-61.
  • 6Liu G C, Lin Z C, Yan S C, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2013, 35(1): 171-184.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2000, 22(8): 888-905.
  • 8Wei S M, Yu Y Z. Subspace segmentation with a minimal squared frobenius norm representation. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR). Tsukuba: IEEE, 2012. 3509-3512.
  • 9Candes E, Li X D, Ma Y, Wright J. Robust principal com- ponent analysis? Journal of the ACM, 2011, 58(3): Article No. 11.
  • 10Liu C1 C, Li P. Recovery of coherent data via low-rank dic- tionary pursuit. Advances in Neural Information Processing Systems, 2014, 27:1206-1214.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部