期刊文献+

联合低秩与稀疏先验的高光谱图像压缩感知重建 被引量:10

Compressed Sensing Reconstruction of Hyperspectral Imagery Jointly Using Low Rank and Sparse Prior
下载PDF
导出
摘要 本文建立了一种新的高光谱图像压缩感知重建模型,编码端采用块对角的Noiselet测量矩阵对每一谱带进行独立采样,解码端首先建立高光谱图像低秩稀疏表示模型,分解为低秩与稀疏成分,并对低秩成分在空间维进行稀疏分解,进而构建联合谱间低秩性先验与谱内空间稀疏性先验的凸优化重建模型,并提出模型求解的增广拉格朗日乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度.实验结果验证了本文模型及其算法的有效性. A new compressed sensing model is proposed to reconstruct hyperspectral image. In the encoder side,blockdialog measurement matrix formed by permuted noiselets transform is used to randomly measure the signal of each channel independently. In the decoder side,the low rank and sparse representation models are firstly constructed to decompose hyperspectral data matrix into low rank and sparse parts,and the low rank part is further sparsely decomposed. Then,the intra-channel low rank prior and the inter-channel sparse prior are jointly utilized to reconstruct the compressed data. A numerical optimization algorithm is also proposed to solve the reconstruction model by augmented lagrange multiplier method. Every sub-problem in the iteration formula admits analytical solution after introducing auxiliary variable and linearization operation. The complexity of the numerical optimization algorithm is reduced. The experimental results verify the effectiveness of our algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2219-2224,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61300162 No.81201161) 江苏省自然科学基金(No.BK2012045 No.BK20131003) 中国博士后基金(No.20110491429) 江苏省博士后基金(No.1101083C) 江苏省光谱成像与智能感知重点实验室基金(No.30920130122003)
关键词 压缩感知 低秩先验 稀疏先验 增广拉格朗日乘子算法 compressed sensing low rank prior sparse prior augmented Lagrange multiplier method
  • 相关文献

参考文献17

  • 1Chein I Chang. Hyperspectral Imaging: Techniques for Spectral Detection and Classification [ M ]. NewYork: Springer, 2003.1 - 10.
  • 2焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:314
  • 3王强,李佳,沈毅.压缩感知中确定性测量矩阵构造算法综述[J].电子学报,2013,41(10):2041-2050. 被引量:62
  • 4D L Donoho. Compressed sensing[ J]. IEEF. Trans on Inf Theo- ry,2006,52(4) : 1289 - 1306.
  • 5A Wagadarikar, et al. Single disperser design for coded aperture snapshot spectral imaging[ J ]. Applied Optics, 2008,47 (10) : 1344 - B51.
  • 6M FDuarte, R G Baraniuk. Kronecker cgxessive sensing [ J ]. IEEEE. ql'ansacfions on Image Processing,2011,21(2):494- 504.
  • 7A Chakrabarfi, T Zickler. Statistics of real-world hyperspeclral images[ A 1. Proceedings of IEEE Int Conf Comp Vis [ C ]. Washington: W.El,2011. 193 - 200.
  • 8Q Du, J E Fowler. Hyperspectral image compression using jpeg2000 and principal component analysis [ J ]. IEEE GeosciRemote Sens Lett, 2007,4 (4) : 201 - 205.
  • 9Waters A, Sankaranarayanan AC, Baraniuk RG. SpaRCS: Re- covering low-rank and sparse matrices from compressive mea- surements: A1. Proceedings of Neural Information Processing Systems[ C]. Cambridge: M1T Press,2011. 1089 - 1097.
  • 10Kiryung Lee, Yorarn Bresler. Admira: Atomic decomposition for minimum rank approximation [ J ]. IEEE. Tram on Info Theory, 2010,56(9) :4402 - 4416.

二级参考文献107

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 3Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 4B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)
  • 5Z B Xu,H Y Wang,X Y Chang.L1/2Regularizer. SciChina Ser F-Inf Sci . 2009
  • 6M Elad.Sparse and Redundant Representations:From Theoryto Applications in Signal and Image Processing. . 2010
  • 7R J Duffin,A C Schaeffer.A class of non-harmonic Fourierseries. Trans.AMS . 1952
  • 8M Elad,M Aharon.Image denoising via sparse and redundantrepresentations over learned dictionaries. IEEE Transac-tions on Image Processing . 2006
  • 9K Engan,K Skretting,J H Husoy.A family of iterative LS-based dictionary learning algorithms,ILS-DLA,for sparse sig-nal representation. Digital Signal Process . 2007
  • 10H Zayyani,M Babaie-Zadeh.Thresholded smoothed-L0 (SL0)dictionary learning for sparse representations. IEEE Inter-national Conference on Acoustics,Speech and Signal Process-ing . 2009

共引文献366

同被引文献73

  • 1陈明惠,王帆,张晨曦,李福刚,郑刚.基于压缩感知的频域OCT图像稀疏重构[J].光学精密工程,2020,28(1):189-199. 被引量:17
  • 2Candes E J, Tao T. Decoding by linear programming [J ]. IEEE Transactions on Information Theory, 2005, 51 (12) : 4203-4215.
  • 3Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118-121.
  • 4Candes E J, Romberg J K, Tao T. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency infor- mation [J ]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489-509.
  • 5Donoho D L, Tsaig Y. Extensions of compressed sensing [J ]. Sig- nal Processing, 2006, 86(5) : 533-548.
  • 6Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pur- suit algorithm for practical compressed sensing [C ]. Asilomar Conference on Signal, Systems, and Computers, Pacific Grove, California, 2008: 581-587.
  • 7Needell D, Tropp J A. CoSaMP: iterative signal recovery from in- complete and inaccurate samples [J ]. Applied and Computation Harmonic Analysis, 2009, 26(3) : 301-321.
  • 8Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underde- termined linear equations by stagewise orthogonal matching pursuit [J ]. IEEE Transactions on information Theory, 2012, 58 (2) : 1094-1121.
  • 9Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J ]. IEEE Transactions on Information The- ory, 2009, 55 (5) : 2230-2249.
  • 10Karahanoglu N, Erdogan H. Compressed sensing signal recovery via forward-backward pursuit [J ]. Digital Signal Processing, 2013, 23(5) : 1539-1548.

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部