摘要
本文基于信号稀疏重构技术,研究利用待检测样本直接进行动目标检测的高效空时自适应处理(STAP)方案.该方案对时域降维的阵元-多普勒域数据采用空域稀疏重构技术估计高分辨率角度-多普勒谱,进而基于稀疏空时谱研究知识辅助的动目标检测算法.理论分析和仿真实验结果表明:本文算法能有效抑制杂波实现慢动目标检测,且运算量小易于实时并行处理.
An efficient direct data domain STAP scheme based on a sparse reconstruction of the primary data is presented to effectively detect ground moving targets. To reduce the computational complexity,the proposed method obtains the high resolution angle-Doppler spectrum by finding the sparsest coefficients using the reduced-dimension data in element-Doppler domain. Therefore,based on the distinct image features of clutter and targets signals,a knowledge-aided moving targets detection algorithm is also introduced. The effectiveness of the proposed approach is shown by both theoretical analysis and simulation results. This scheme is computationally efficient for real-time parallel processing.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第11期2286-2290,共5页
Acta Electronica Sinica
基金
国家自然科学青年基金(No.61201459
No.61301212)
江苏省自然科学青年基金(No.BK2012408)
国防基础科研(No.B2520110008)
江苏省六大人才高峰(No.ZBZZ-009)
中央高校科研业务费(No.2012B6014)
雷达成像与微波光子技术教育部重点实验室基金(No.PIMP-2013002)
关键词
空时自适应处理
稀疏重构
杂波抑制
space-time adaptive processing
sparse reconstruction
clutter suppression