期刊文献+

基于降维稀疏重构的高效数据域STAP算法研究 被引量:5

An Efficient Data Domain STAP Algorithm Based on Reduced-Dimension Sparse Reconstruction
下载PDF
导出
摘要 本文基于信号稀疏重构技术,研究利用待检测样本直接进行动目标检测的高效空时自适应处理(STAP)方案.该方案对时域降维的阵元-多普勒域数据采用空域稀疏重构技术估计高分辨率角度-多普勒谱,进而基于稀疏空时谱研究知识辅助的动目标检测算法.理论分析和仿真实验结果表明:本文算法能有效抑制杂波实现慢动目标检测,且运算量小易于实时并行处理. An efficient direct data domain STAP scheme based on a sparse reconstruction of the primary data is presented to effectively detect ground moving targets. To reduce the computational complexity,the proposed method obtains the high resolution angle-Doppler spectrum by finding the sparsest coefficients using the reduced-dimension data in element-Doppler domain. Therefore,based on the distinct image features of clutter and targets signals,a knowledge-aided moving targets detection algorithm is also introduced. The effectiveness of the proposed approach is shown by both theoretical analysis and simulation results. This scheme is computationally efficient for real-time parallel processing.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2286-2290,共5页 Acta Electronica Sinica
基金 国家自然科学青年基金(No.61201459 No.61301212) 江苏省自然科学青年基金(No.BK2012408) 国防基础科研(No.B2520110008) 江苏省六大人才高峰(No.ZBZZ-009) 中央高校科研业务费(No.2012B6014) 雷达成像与微波光子技术教育部重点实验室基金(No.PIMP-2013002)
关键词 空时自适应处理 稀疏重构 杂波抑制 space-time adaptive processing sparse reconstruction clutter suppression
  • 相关文献

参考文献13

  • 1L E Brerman, J D Mallet, I S Reed. Theory of adaptive radar [J]. IEEE Trans on AES, 1973,9(2) :237 - 251.
  • 2R Klemm. The Applications of Space-time Adaptive Processing[M]. London, UK: lEE, 2004.
  • 3W L Melvin. A ST.AP overview[ J]. IEEE Aerospace and Elec- Ironic System Magazine, 2004,19( 1 ) : 19 - 35.
  • 4T Sarkar, H Wang, P Shennyun, et al. A deterministic least- squares approach to space time adaptive processing (STAP)[J] .IEEE Trans on AP,2001,49(1) :91 - 103.
  • 5C Diego, B Wolfram. A robust direct data domain approach for ST AP[J]. IEEE Transon Signal Processing, 2012,60 (3) : 1283 - 1294.
  • 6D Hal, H Braham, C W Michael. Image feature-based space- time processing for ground moving target detection [ J ]. IEEE Signal Processing Letter,2006,13(4) :216 - 219.
  • 7孙珂,张颢,李刚,孟华东,王希勤.基于杂波谱稀疏恢复的空时自适应处理[J].电子学报,2011,39(6):1389-1393. 被引量:22
  • 8Z Yang,R C de Lamare, X Li. Sparsity-aware space-time adap- tive processing algorithms with Ll-norm regularization for air- borne radar[J] lET Signal Processing,2012,6(5) :413 - 423.
  • 9Z H Zhang, W C Xie, W D Hu, W X Yu. Local degrees of freedom of airborne radar clutter for STAP [ J ]. IEEE Geo- science and Remote Sensing Letter,2009,6( 1 ):97- 101.
  • 10W Honglin, W Shu. Adaptive sparsity matching pursuit algo- rithm for sparse reconstruction [ J ]. IEEE, Signal Processing Letter,2012,19(8) :471 - 474.

二级参考文献7

  • 1Klemm R. Space-time Adaptive Processing in Principles and Appfications [M]. London: IEE, 2002.65 - 75.
  • 2Reed I S,Mallett J D,Brennan L E. Rapid convergence rate in adaptive arrays [ J]. 1F.F.E Transactions on Aerospace and Elec- tronic Systems, 1974,10(6 ) :853 - 863.
  • 3SUN Ke, ZHANG Hao, LI Gang, MENG Hua-dong, WANG Xi-qin. A novel STAP algorithm using sparse recovery tech- nique [ A ]. IEEE International Conference on Geoscieuce & Remote Sensing Symposium [C]. Cape Town: IEEE, 2009. 336 - 339.
  • 4Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[ J]. IEEE Transactions on Information Theory,2006,52( 1 ) : 6 - 18.
  • 5Boyd S P. Matlab Software for Disciplined Convex Program- ming [ CP]. http://www, stanford, edu/~ boyd/cvx, 2010.
  • 6Titi G W,Marshall D F. The ARPA/NAVY mountaintop pro- gram: adaptive signal processing for airborne early warning radar [ A]. 1EEE International Conference on Acoustics, Speech and Signal Processing [ C]. Atlanta: 1EF.E, 1996.1165 - 1168.
  • 7Krim H, Viberg M. Two decades of array signal processing re- search: the parametric approach [ J ]. IEEE Signal Processing Magazine, 1996,13(4) :67 - 94.

共引文献21

同被引文献27

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部