期刊文献+

基于改进分水岭和形态学的视频运动目标检测 被引量:1

Moving object detection based on marked watershed and morphology
下载PDF
导出
摘要 为了获得理想的视频运动目标检测结果,本文提出了一种标记分水岭和形态学相融全的视频运动目标检测算法。首先采用各向异性扩散模型对视频图像进行预处理,消除噪声对目标检测的干扰,然后差分算法提取运动目标的轮廓,并对提取的目标轮廓进行形态学操作,最后采用标记分水岭算法对运动目标进行标记和分割,并采用仿真实验测试算法的性能。仿真结果表明,本文算法较好防止了"过分割"缺陷的出现,可以准确从复杂背景检测到运动目标,不仅提高了视频运动目标的检测正确率,并且加快了视频的检测的速度。 In order to obtain ideal detection results of moving object,a new video moving object detection algorithm based on labeling watershed and detection algorithm and morphology is proposed in this paper.Firstly,the image is pre-processed by diffusion model to eliminate noise interference on object detection,and the difference algorithm is used to extract outline of moving object,secondly,morphological operations is use to process the target outline,finally,marked watershed algorithm is used to segment moving object and performance is tested by simulation experiments.The simulation results show that the proposed algorithm can prevent over segmentation problems and accurately detect moving object from complex background,not only improve the detection accuracy and accelerate the speed of moving object detection.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第11期30-33,共4页 Laser Journal
关键词 运动目标检测 标记分水岭算法 形态学操作 各向异性扩散模型 Moving object detection Marked-watershed algorithm Morphology operators Diffusion model
  • 相关文献

参考文献15

  • 1Tsagkatakis G, Savakis A, Online distance metric learning for object tracking[J]. IEEE Trans on Circuits and Systems for Video Technology, 2011, 21(12):1810-1821.
  • 2Zivovic Z, Ferdinand H. Efficient adaptive density estima- tion per image pixel for the task of background subtraction Pattern Recognition Letters, 2006.7(26):773-780.
  • 3Maddalena L, Petrosino A. A self-organizing approach tobackground subtraction for visual surveillance applications [J]. IEEE Transactions on Image Processing, 2008, 17(7): 1168-1177.
  • 4Lee S, Lee J, Hayes M H, et al. Adaptive background gener- ation for automatic detection of initial object region in mul- tiple color-filter aperture camera-based surveillance system [J]. IEEE Transations on Consumer Electronics, 2012, 58 (01):104-110.
  • 5Lin H H, Chuang J H, Liu T L. Regularized background ad- aptation: a novel learning rate control scheme for gaussian mixture modeling [J]. IEEE Transactions on Image Process- ing, 2011, 20(3): 822-836.
  • 6Li S X, Chang H X, Zhu C F. Adaptive pyramid mean shift for global real-time visual tracking [J]. Image and Vision Computing, 2010, 28, (3):424-437.
  • 7Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with background-weighted local kernels[J]. Com- puter Vision and Image Understanding, 2008, 112, (3): 296-309.
  • 8Leichter 1, Lindenbaum M, Rivlin E. Mean shift tracking with multiple references color histograms [J]. Computer Vi- sion and Image Understanding, 2010, 114, (3):400-408.
  • 9Benezeth Y, Jodoin P M, Emile B. Comparative study of background subtraction algorithms [J]. Elec. Imaging, 2010, 19(3): 301-312.
  • 10Rosten E, Porter R, Drummond T. Faster and better: a ma- chine learning approach to comer detection [J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部