期刊文献+

面向室内的基于异步UWB测距的椭圆位置估计算法

Indoor Asynchronous-UWB-Range-based Elliptical indoor Localization algorithm
下载PDF
导出
摘要 为了实现简单而精确的室内定位,并利用超宽带信号UWB(ultra-wide band)的特性,提出了基于异步UWB测距的椭圆室内位置估计方案AUREP(Asynchronous–UWB Range-elliptical indoor Position)。该方案由位置定位器locator、目标节点、参考节点组成。定位器先发射UWB信号,一旦接收该信号,目标节点进行转发。参考节点捕捉来自定位器、目标节点的信号,并通过计算这两不同路径的信号TOA(Time of arrival)差,最后,采用高斯-牛顿迭代算法估计目标节点的位置。与同步的球形定位系统SGPS(Synchronous-global position systems)不同,提出的方案无需同步机制。AUREP方案采用异步模式、无需同步设备,简化了系统。仿真结果表明提出的AUREP方案的定位精度高于双曲线定位系统SHPS(Asynchronous–Hyperbola Position systems),同时,AUREP的定位误差逼近于克拉美-罗下限CRLB(Cramer-Rao lower bound)。 In order to realize the simple and accurate indoor positioning,with the characters of Ultra-wide band(UWB) signal,the asynchronous-UWB range-elliptical indoor position(AUREP) scheme is proposed in this paper.The AUREP consist of locator,reference-node and target-node.Locator firstly transmits the UWB signal,and received by target-node and retransmitted,reference-node received the signal from locator and target-node,and compute the different between TOA(Time of arrival),finally,the position of the target-node estimated by Gauss-Newton.Compared with synchronous-global position systems(SGPS),the AUREP is without synchronous mechanism.The AUREP adopt the asynchronous mechanism,without synchronous device,which make the systems simplified.Simulation result shows that the positional accuracy of the proposed AUREP outperform the asynchronous-Hyperbola Position systems(SHPS),moreover,the position error of AUREP draw near the Cramer-Rao lower bound(CRLB).
出处 《激光杂志》 CAS CSCD 北大核心 2014年第11期63-67,共5页 Laser Journal
基金 吉林省科技发展计划项目(20110219)
关键词 超宽带 克拉美-罗下限 定位 椭圆 异步 到达时间 Ultra-wide band(UWB) Cramer-Rao lower bound Position Elliptical Asynchronous Time of arrival
  • 相关文献

参考文献16

  • 1Gezici S, Poor HV. Position estimation via ultra-wide-band signals. Proc[J].IEEE-Special Issue on UWB Technology and Emerging Applications,2009,97(2):386-403.
  • 2石欣,印爱民,陈曦.基于RSSI的多维标度室内定位算法[J].仪器仪表学报,2014,35(2):261-268. 被引量:78
  • 3Su, Bing, Chong Wu, and Hongyuan Wang. "Application of Improved Dynamic RSSI Algorithm in WlFI Indoor Posi- tioning[J]." Sensors & Transducers 2014,168:1726.
  • 4Low ZN, Cheong JH, Law CL,eds. Pulse detection algo- rithm for line-of-sight(LOS)UWB ranging applications[J], IEEE Antennas Wireless Propag.Lett.,2005,4(1):63-67.
  • 5Hur H, Alan H. Discrete-time H1 filtering for mobile robot localization using wireless sensor network[J]. IEEE Sensors J, 2013, 13: 245-252.
  • 6Conti A, Guerra M, Dardari D, et al. Network experimenta- tion for cooperative localization[J]. IEEE J Sel Areas Com- mun,2012, 30: 467-475.
  • 7Guvenc I, Sahinoglu Z .Threshold selection for UWB TOA estimation based on kurtosis analysis[J].IEEE Commun. Lett.,2005,9( 12): 1025-1027.
  • 8Y. Geng, J. He, K. Pahlavan, Modeling the Effect of Human Body on TOA Based Indoor Human Tracking[J], Interna- tional Journal of Wireless Information Networks 2014,20(4): 306-317.
  • 9Smith J,Abel J.Closed-form least-squares source location esti- mation from range-difference measurements[J]. IEEE Trans. Acoust., Speech, Signal Process., 1987,35 (12): 1661 - 1669.
  • 10Chan YT, Ho KC.A simple and efficient estimator for hyper- bolic location[J]. IEEE Trans.Signal Process.,1994,42(8): 1905-1915.

二级参考文献15

  • 1LIU C E. Research on self-localization and target tracking in wireless sensor networks [ D ]. Beijing: Institute of A- coustics, Chinese Academy of Sciences, 2006.
  • 2AKYLDIZ I F, SU W L, SANKARASUBRAMANIAM Y, et al. A survey on sensor networks [ J ]. IEEE Communi- cations Magazine ,2002,40( 8 ) : 102-114.
  • 3BAI-IL P,PADMANABHAN V N. RADAR: An in-build- ing RF-based user localization and tracking system [ C ]. Proc of INFOCOM' 2000, TEL Aviv, Israel, 2000, 2: 775-784.
  • 4BLUMENTHAL J, GROSSMANN R,GOLATOWSKI F, et al. Weighted centroid localization in zigbee-based sensor net- works [ C ] Intelligent Signal Processing, 2007. WISP 22X/7. IEEE International Symposium on,2007:1-6.
  • 5PIVATO P, FONTANA L, PALOPOLI L, et al. Experi- mental assessment of a RSS-based localization algorithm in indoor environment[ C]. Instrumentation and Measure- ment Technology Conference (I2MTC) ,2010:416-421.
  • 6BUJA A, SWAYNE D F, LITTMAN M, et al. XGvis: Interactive data visualization with multidimensional scaling[ J ]. Journal of Computational and Graphical Statistics, 2004,5 : 21-53.
  • 7SHANG Y, RUML W, ZHANG Y. Localization from mere connectivity in sensor networks[ C]. Proc of the 4th ACM Int'l Symp on Mobile Ad Hoc networking & computing, New York: ACM Press,2003:201-212.
  • 8SHANG Y, RUML W. Improved MDS-based localization [ C ]. Proceedings of the 23rd Conference of the IEEE Communications Society, Hong Kong, China, 2004: 2640-2651.
  • 9秦爽.参数化多维标度定位方法研究[D].成都:电子科技大学.2013.
  • 10KENNEDY J, EBERHART R. Particle swam optimization [ C ]. Proc IEEE Int Conf on Neural Networks, Perth, Aus- tralia, 1995 : 1942-1948.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部