期刊文献+

近Kaehler流形S^3×S^3上的殆切触拉格朗日子流形 被引量:1

Almost contact Lagrangian submanifolds of nearly Kaehler S^3×S^3
下载PDF
导出
摘要 对于近Kaehler流形S3×S3上的一个拉格朗日子流形M,给出由M上的一个单位向量场典范引出的殆切触度量结构是α-Sasakian的充要条件.当这个殆切触度量结构为切触度量结构时,给出了这个切触度量结构是Sasakian结构的充分必要条件. For a Lagrangian submanifold of the nearly Kaehler S^3× S^3, we provide a necessary and sufficient condition for a canonically induced almost contact metric structure by a unit vector field, to be α-Sasakian. Furthermore, assuming the almost contact metric structure is contact metric structure, we give a necessary and sufficient condition in which the contact metric structure is Sasakian.
出处 《纯粹数学与应用数学》 CSCD 2014年第5期454-459,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(11171139 11326045 11401099) 福建省自然科学基金(2011J05001) 福建省教育厅A类项目(JA11052)
关键词 近Kaehler流形 拉格朗日子流形 (殆)切触度量结构 Sasakian结构 nearly Kaehler manifold Lagrangian submanifold (almost) contact metric structure Sasakian structure
  • 相关文献

参考文献8

  • 1Gray A. Nearly Kaehler manifolds [J]. J. Diff. Geom., 1970,4:283-309.
  • 2Deshmukh S, EI Hadi K. A Sasakian structure on a 3-dimensional totally real submanifold of the nearlyKaehler 6-sphere [J]. Panamer Math. J., 1992,3:43-52.
  • 3Dillen F, Opozda B, Verstraelen L, et al. On totally real 3-dimensional submanifold of the nearly Kaehler6-sphere [J]. Proc. Am. Math. Soc., 1987,99:741-749.
  • 4Ejiri N. Totally real submanifolds in a 6-sphere [J]. Proc. Am. Math. Soc., 1981,83:759-763.
  • 5Butruille J. B. Homogeneous nearly Kaehler manifolds. Handbook of Pseudo-Riemannian Geometry andSupersymmetry [M]. IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Z¨urich, 2010.
  • 6Bolton J, Dillen F, Dioos B, et al. Almost complex surfaces in the nearly kaehler S3  S3 [J]. ArXiv: 1208.0737. Preprint, 2013.
  • 7Blair D. E. Riemannian Geometry of Contact and Symplectic Manifolds [M]. Sec. edi. Progress in Mathematics,203., Boston, MA: Birkh¨auser Boston, Inc, 2010.
  • 8Blair D. E, Sharma R. Generalization of Myers' theorem on a contact manifold [J]. Illinois Journal of Mathematics, 1990,34:837-844.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部