期刊文献+

完全五部图的S-整图性研究

A study of S-integral graph of complete 5-partite graphs
下载PDF
导出
摘要 应用矩阵的初等变换得到了完全五部图的Seidel多项式,并给出了完全五部图是S-整图的一个充分必要条件.进一步刻画了完全正则五部图和两类特殊完全五部图的Seidel谱. By elementary transformation of a matrix, we compute the Seidel polynomial of complete 5-partite graph, and give a necessary and sufficient condition for a complete 5-partite graph to be an S-integral graph. Furthermore, we characterize the Seidel spectra of a complete regular 5-partite graph and two classes of complete 5-partite graphs with special structure, respectively.
作者 赵宁 吴廷增
出处 《纯粹数学与应用数学》 CSCD 2014年第5期467-473,共7页 Pure and Applied Mathematics
基金 青海省自然科学基金(2011Z911)
关键词 Seidel多项式 Seidel谱 S-整图 完全五部图 Seidel polynomial Seidel spectrum S-integral graph complete 5-partite graphs
  • 相关文献

参考文献14

  • 1Cvetkovi′c D, Doob M, Sachs H. Spectra of Graphs [M]. New York:Academic press, 1980.
  • 2Harary F, Schwenk A J. Which graphs have integral [M]//Graphs and combinatorics. Berlin: Springer, 1974.
  • 3Bali′nska K T, Cvetkovi′c D, Radosavljevi′c Z, et al. A survey on integral graphs [J]. Univ. Beograd. Publ.Elektrotehn. Fak. Ser. Mat., 2002,13:42-65.
  • 4LU Shi-fang,ZHAO Hai-xing.Signless Laplacian Characteristic Polynomials of Complete Multipartite Graphs[J].Chinese Quarterly Journal of Mathematics,2012,27(1):36-40. 被引量:7
  • 5Wang Ligong, Liu Xiaodong. Integral complete multipartite graphs [J]. Discrete Math., 2008,308:3860-3870.
  • 6Simi′c S K, Stanic Z. Q-integral graphs with edge-degrees at most five [J]. Discrete Math., 2008,308:4625-4634.
  • 7Stani′c Z. Some results on Q-integral graphs [J]. Ars Combin., 2009,90:321-335.
  • 8Kirland S. Constructably laplacian integral graphs [J]. Linear Algebra Appl., 2007,423:3-21.
  • 9赵国鹏,王力工.完全多部图的拉普拉斯特征多项式[J].纺织高校基础科学学报,2011,24(2):243-245. 被引量:8
  • 10卢世芳,卫良,赵海兴.完全3-部图的无符号Laplace谱[J].山东大学学报(理学版),2012,47(12):41-46. 被引量:3

二级参考文献37

  • 1Cvetkovic D M,Doob M,Sachs H.Spectra of Graphs[M].New York:Academic Press,1980.
  • 2陈惠开.应用图论[M].范定松,张玲玲,译.北京:人民邮电出版社,1988.
  • 3苗正科 张克民.最小奇围长为r的无向图的本原指数集.南京大学学报数学半年刊,1992,(2):29-36.
  • 4柳柏濂.组合矩阵论[M].北京:科学出版社,2004.
  • 5邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 6BONDY J,MURTY U S R. Graph Theory with Applications[M]. New York: North-holland,1976.
  • 7CVETOVI D,DOOB M,SACHS H. Spectra of Graphs[M]. New York: Academic Press,1980.
  • 8HARARY F,SCHWENK A J. Which graphs have integral spectral [C]. Berlin: Springer,1974: 45-51.
  • 9BALIńSKA K T,CVETKOVI D,RADOSAVLJEVI Z,et al. A survey on integral graphs[J]. Univ Beograd Pull Elektrotehn Fak Ser Mat,2002,13: 42-65.
  • 10WANG Li-gong,LI Xue-liang,HOEDE C. Integral complete r-partite graphs[J]. Discrete Math,2004,283: 231-241.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部