期刊文献+

关于k-sum-avoiding子集基数的估计

On the cardinality of k-sum-avoiding subsets
下载PDF
导出
摘要 对sum-avoiding子集进行推广,对任意正整数k(k 2),若集合S是A■N的一个子集,且S中任意k个元素的和都不属于A,则S称为集合A的k-sum-avoiding子集.估计了当|A|=n时,A的k-sum-avoiding子集S的最大基数. For a positive integer k, we call a subset S A k-sum-avoiding, if any sum of k distinct elements taken from S does not belong to A. In this paper, we estimate the maximal cardinality of k-sum-avoiding subsets S of A when|A|=n.
作者 赵青青
出处 《纯粹数学与应用数学》 CSCD 2014年第5期507-511,共5页 Pure and Applied Mathematics
关键词 sum-avoiding子集 最大基数 k-sum-avoiding子集 sum-avoiding subsets maximal cardinality k-sum-avoiding subsets
  • 相关文献

参考文献6

  • 1Choi S L G. On a combinatorial problem in number theory [J]. Proc. London Math. Soc., 1971,23:629-641.
  • 2Rusza I Z. Sum-avoiding subsets [J]. Ramanujan J., 2005,9:77-82.
  • 3Behrend F A. On sets of integers which contain no three terms in arithmetical progression [J]. Proc. Nat Acad. Sci., 1946,32:331-332.
  • 4Sudakov B, Szemer6di B and Vu V H. On a question of ErdSs and Moser [J]. Duke Math., 2005,129:129-155.
  • 5崔丽雯,杨胜良.广义的k阶Fibonacci-Jacobsthal序列及其性质[J].纯粹数学与应用数学,2011,27(6):819-824. 被引量:3
  • 6Erdos P, Ginzburg A, Ziv A. Theorem in the additive number theory [J]. Bull. Research Council Israel., 1961,10F:41-43.

二级参考文献8

  • 1Kilic E. The generalized order-k Fibonacci-Pell sequence by matrix methods[J]. Taiwan Residents Journal of Mathematics, 2006,6:1661-1670.
  • 2Vajda S. Fibonacci, Lucas Numbers and the Golden Section[M]. New York: Wiley, 1989.
  • 3Yilmaz F, Durmus B. The generalized order-k Jacobsthal numbers[J]. Journal of Integer Sequences, 2009, 34:1685-1694.
  • 4Koken F, Bozkurt D. On the Jacobsthal-Lucas numbers by matrix method[J]. Journal of Integer Sequences, 2008,33:1629-1633.
  • 5Er M C. Sums of Fibonacci numbers by matrix methods[J]. The Fibonacci Quarterly, 1984,22:204-207.
  • 6Tasci D, Kilic E. On the order-k generalized Lucas numbers[J]. Applied Mathematics and Computation, 2004,155:637-641.
  • 7Fu Xudan, Zhou Xia. On matrices related with Fibonacci and Lucas numbers[J]. Applied Mathematics and Computation, 2008,200:96-100.
  • 8Cerin Z, Gianella G M. On sums of squares of Pell-Lucas numbers[J]. Electronic Journal of Combinatorial Number Theory, 2006,6:1-16.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部