期刊文献+

Filiform李超代数L_(n,m)的导子和保积Hom-结构 被引量:4

The derivations and the multiplicative Hom-structures of Filiform Lie superalgebras L_(n,m)
下载PDF
导出
摘要 将李超代数的导子和Hom-结构表示为矩阵,通过计算,具体刻画了特征零的代数闭域上Filiform李超代数Ln,m的导子代数和保积Hom-结构. Let F be an algebraically closed field of characteristic zero. In this paper, we characterize the derivations and the multiplicative Hom-structures of Filiform Lie superalgebras Ln,m over F in terms of matrices.
作者 焦阳 刘文德
出处 《纯粹数学与应用数学》 CSCD 2014年第5期534-542,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(11171055 11471090) 黑龙江省教育厅科学技术研究项目(12541246 12541184) 黑龙江省自然科学基金(A201412)
关键词 Filiform李超代数 导子 Hom-结构 Filiform Lie superalgebras derivations Hom-structures
  • 相关文献

参考文献9

  • 1Larsson D, Silvesrov S. Quasi-Hom-derformations of s[2(F) using twisted derivations [J]. Comm. Algebra, 2007,35:4303-4318.
  • 2Ammar F, Makhlouf A. Hom-Lie superalgebras and Hom-Lie admissible superalgebras [J]. J. Algebra, 2010,324:1513-1528.
  • 3邹旭娟,刘文德.一类Witt型李超代数的超导子代数[J].数学杂志,2011,31(3):469-475. 被引量:3
  • 4Cao B, Luo L. Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras [J]. J. Lie Theory, 2013,23:1115-1128.
  • 5Yuan J, Sun L, Liu W. Horn-Lie superalgebra structures on infinite-dimensional simple Lie superalgebras of vector fields [J]. J. Geom. Phys., 2014,84:1-7.
  • 6高宇佳,孙丽萍,刘文德.Hom-李超代数的结构[J].纯粹数学与应用数学,2014,30(2):186-194. 被引量:3
  • 7陈翠,连海峰.4维幂零李代数的导子与triple导子[J].数学的实践与认识,2014,44(5):232-235. 被引量:6
  • 8Kac V. Lie superalgebras [J]. Adv. Math., 1977,26:8-96.
  • 9Khakimdjanov Y, Navarro R. A complete description of all the infinitesimal deformations of the Lie super- algebra Ln,m [J]. J. Geom. Phys., 2010,60:131-141.

二级参考文献20

  • 1Wen-de LIU~(1+) Yong-zheng ZHANG~2 ~1 Department of Mathematics,Harbin Normal University,Harbin 150080,China,~2 Department of Mathematics,Northeast Normal University,Changchun 130024,China.A family of transitive modular Lie superalgebras with depth one[J].Science China Mathematics,2007,50(10):1451-1466. 被引量:4
  • 2Miers C. Lie triple derivations of yon Neumann algebras[J]. Proc Amer Math Soc, 1978, 71: 57-61.
  • 3Ji P, Wang L. Lie triple derivations of TUHF algebras[J]. Linear Algebra and itsApplications, 2005, 403: 399-408.
  • 4Lu F. Lie triple derivations on nest algebras[J]. Math Nachr, 2007, 280: 882-887.
  • 5Wang H, Li Q. Lie triple derivations of the Lie algebras of strictly upper triangular matrix over a commutative ring[J]. Linear Algebra Appl, 2009, 430: 66-77.
  • 6Willem A de Graaf. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2 [J]. Journal of Algebra, 2007, 309: 640-653.
  • 7Larsson D, Silvesrov S D. Quasi-hom-Lie algebra, central extensions and 2-cocycle-like identities [J]. J.Algebra, 2005,288(2):321-344.
  • 8Hartwig J T, Larsson D, Silvesrov S D. Derformations of the Lie algebras using -deriveations [J]. J. Algebra,2007,295:314-361.
  • 9Larsson D, Silvesrov S D. Quasi-hom-derformations of sl2(F) using twisted derivations [J]. Comm. Algebra,2007,35(12):4303-4318.
  • 10Chaichian M, Kulish P, Lukierski J. q-Deformed Jacobi identity, q-oscillators and q-deformed in nite-dimensional algebras [J]. Phys. Lett. B, 1990,237(3):401-406.

共引文献9

同被引文献16

  • 1Harywig J, Larsson D, Silvestrov S. Deformations of Lie algebras using a-derivations [J]. J. Algebra, 2006,295:314-361.
  • 2Ammar F, Ejbehi Z, Makhlouf A. Cohomology and deformations of Horn-algebras [J]. J. Lie Theory, 2011,21:813-836.
  • 3Sheng Y. Representations of Horn-Lie algebras [J]. J. Algebra, 2012,15(6):1081-1098.
  • 4Jin Q, Li X. Hom-structures on semi-simple Lie algebras [J]. J. Algebra, 2008,319:1398-1408.
  • 5Cao B, Luo L. Hom-Lie superalgebra stuctures on finite-dimensional simple Lie superalgebras [J]. J. Lie Theory, 2013,23:1115-1128.
  • 6Yuan J, Sun L, Liu W. Horn-Lie superalgebra structures on infinite-dimensional simple Lie superalgebras of vector fields [J]. J. Geom. Phys., 2014,84:1-7.
  • 7Vergne M. Reductibilite de la variete des algebres de Lie nilpotentes [J]. (French) C. R. Acad. Sci. Paris S6r, 1966,A-B263:A4-A6.
  • 8Gomez A, Jimenez-Merchan J R, Khakimdjanov Y. Low-dimensional filiform Lie algebras [J]. J. Pure Appl. Algebra, 1998,130:133-158.
  • 9Fialowski A. An example of formal deformations of Lie algebra [J]. Kluwer Academic Publishers, 1998,130:375- 401.
  • 10Gomez J R, Jimenez-Merchan A. Naturally graded quasi-filiform Lie algebras [J]. J. Algebra, 2002,256: 211-228.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部