期刊文献+

不确定变量序列依r阶收敛的若干性质 被引量:1

Some properties of convergence in r-order for uncertain sequence
下载PDF
导出
摘要 在不确定理论中,已经给出了不确定变量序列平均收敛及均方收敛的定义。文章将其推广到更为一般的不确定变量序列依r(r>0)阶收敛(r=1时为平均收敛;r=2时为均方收敛)。提出了不确定变量序列依r(r>0)阶收敛的定义,研究了其性质,给出了不确定变量依r阶收敛的基本列的定义,并讨论其与依r阶收敛的关系。 In uncertainty theory, the concepts of convergence in mean and convergence in mean square for un-certain sequence have been established. This paper has presented the concept of convergence in r-order(r0) for uncertain variable sequence. When r=1, it is convergence in mean; when r=2, it is convergence in mean square.Besides, some mathematical properties of convergence in r-order are proved. Furthermore, the concept of fundamental in r-order for uncertain variables is presented. The relation between convergence in r-order and fundamental in r-order is also discussed.
出处 《苏州科技学院学报(自然科学版)》 CAS 2014年第4期22-25,共4页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 国家自然科学基金资助项目(11272227)
关键词 不确定测度 不确定变量 依r阶收敛 uncertain measure uncertain variable convergence in r-order
  • 相关文献

参考文献11

  • 1Liu Baoding. Uncertainty Theory[M]. 2th ed. Berlin:Spfinger-Verlag,2007.
  • 2Liu Banding. Some research problems in uncertain theory[J]. Journal of Uncertain Systems, 2009,3 (1) :3-10.
  • 3Liu Baoding. Uncertain set theory and inference rule with application to uncertain control[J]. Journal of Uncertain Systems ,2010,4(2) :83-98.
  • 4Liu Baoding. Uncertain risk analysis and uncertain reliability analysis[J]. Journal of Uncertain Systems ,2010,4(3) : 163-170.
  • 5Liu Baoding. Theory and Practice of Uncertain Programming[M]. 2th ed. Berlin :Springer-Verlag,2009.
  • 6Liu Baoding. Uncertain logic for modeling human language[J]. Journal of Uncertain Systems, 2011,5 ( 1 ) : 3-20.
  • 7Liu Baoding. Existence and uniqueness theorem for uncertain differential equations [J]. Fuzzy Optimization and Decision Making,2010,9 (1) 69-81.
  • 8Liu Baoding. Uncertainty Theory[M]. 4th ed. Bertin:Springer-Verlag,2010.
  • 9You Cuilian. On the convergence of uncertain sequences[J]. Mathematical and Computer Modelling,2009,49:482-487.
  • 10Guo Haiying,Xu Chunxia. A necessary and sufficient condition of convergence in mean square for uncertain sequence[J]. Journal of Information 2012,15(12) :233-238.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部