期刊文献+

并行计算在MOEA/D-EGO算法中的应用

Parallel Computing in MOEA/D-EGO Algorithm
下载PDF
导出
摘要 在MOEA/D-EGO算法中,当建模样本点集合元素太多和种群规模较大时,会导致算法运行时间过长.为了减少MOEA/D-EGO算法的运行时间,文章对MOEA/D-EGO算法的建模过程和种群优化过程同时并行化.在综合考虑实验条件限制的情况下,使用了基于主从式的并行模型,模型在充分考虑计算机资源的使用效率与负载均衡等因素下,增加了主进程的任务,主进程不仅需要为子进程分配计算任务、分发数据、进行算法配置、收集子进程返回的计算结果,还需要参与子进程的任务,完成与子进程相当量的计算任务.实验结果表明文章的并行MOEA/D-EGO算法能有效求解多目标优化问题,且能够大幅缩短算法运行时间. In MOEA/D-EGO algorithm, when there are too many modeling sample set elements or the population scale is large , it will lead to a long computation time. In order to reduce the run time of the MOEA/D-EGO algorithm, this paper parallelizes both the modeling process and the population optimization process. considering the experimental conditions, this paper uses the master-slave parallel model which adds the task to the main process in the condition of fully considering the efficiency of computer resources and load balance. The main process not only assigns computation task, distributes data, configures algorithm, collects the computation results, but also participates in the task of child process and complete the same amount of computation task as child process. The experimental result shows that the paralleled MOEA/D-EGO algorithm can effectively solve the multi-objective optimization problem, and can significantly shorten the running time of the algorithm.
作者 马永格 吴钊
出处 《湖北文理学院学报》 2014年第5期9-14,共6页 Journal of Hubei University of Arts and Science
基金 国家自然科学基金重点项目(31130055) 国家自然科学基金面上项目(31372573 61172084) 湖北省自然科学基金项目(2013CFC026) 湖北省科技支撑计划项目(2013BHE022)
关键词 MOEA/D-EGO算法 并行计算 候选解 种群优化 MOEA/D-EGO algorithm Parallel computing Candidate solution Population optimization
  • 相关文献

参考文献10

  • 1ZHANG Q1NGFU, LIU WUDONG, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474.
  • 2LOGOFTU DONIA, GRUBER MANFRED, DUMITRESCU D D. Distributed Evolutionary Algorithm Using the MapReduce Paradigm-A Case Study for Data Compaction Problem[M]. Berlin: Springer Berlin Heidelberg, 2011: 279-291.
  • 3李建江,崔健,王聃,严林,黄义双.MapReduce并行编程模型研究综述[J].电子学报,2011,39(11):2635-2642. 被引量:187
  • 4刘小明,李晖,熊慕舟.并行演化算法在MEMS继电器参数优化中的应用[J].计算机工程与应用,2014,50(6):200-204. 被引量:2
  • 5RYU SI-JUNG, KIM JONG-HWAN. Distributed Multiobjective Quantum-Inspired Evolutionary Algorithm[J]. Robot Intelligence Technology and Applications, 2013, 208: 663-670.
  • 6J1N Y. A comprehensive survey of fitness approximation in evolutionary computation[J]. Sott Computing, 2005, 9(1): 3-12.
  • 7ZHANG QINGFU, LI HUI. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
  • 8JEONG SHINKYU, OBAYASHI SHIGERU. Efficient Global Optimization (EGO) for Multi-objective Problem and Data Mining[C]//IEEE. Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Chicago: IEEE, 2005: 2138-2145.
  • 9ULMER H, STREICHERT F, ZELL A. Evolution strategies assisted by Gaussian processes with improved pre-selection criterion[C]// IEEE. Proceedings of the 2005 IEEE Congress on Evolutionary Computation. IEEE, 2003: 692-699.
  • 10DEB K, THIELE L, LALrMANNS M, et al. Scalable multi-objective optimization test problems[C]//IEEE. Proceedings of the 2002 IEEE Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 825-830.

二级参考文献58

  • 1尤政,李慧娟,张高飞.MEMS微继电器及其关键问题研究现状[J].压电与声光,2006,28(3):278-281. 被引量:8
  • 2宁焕生,张瑜,刘芳丽,刘文明,渠慎丰.中国物联网信息服务系统研究[J].电子学报,2006,34(B12):2514-2517. 被引量:151
  • 3J Dean,S Ghemawat.MapReduce:Simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 4J L Wagener.High performance fortran[J].Computer Standards & Interfaces,Elsevier,1996,18(4):371-377.
  • 5W Gropp,E Lusk,et al.Using MPI:Portable Parallel Programming with the Message Passing Interface[M].Cambridge:MIT Press,1999.1-350.
  • 6A Geist,A Beguelin,et al.PVM:Parallel Virtual Machine:A Users' Guide and Tutorial for Networked Parallel Computing[M].Cambridge:MIT Press,1995.1-299.
  • 7A Verma,N Zea,et al.Breaking the mapreduce stage barrier .Proc of IEEE International Conference on Cluster Computing .Los Alamitos:IEEE Computer Society,2010.235-244.
  • 8H C Yang,A Dasdan,et al.Map-Reduce-Merge:Simplified relational data processing .Proc of ACM SIGMOD International Conference on Management of Data .New York:ACM,2007.1029-1040.
  • 9S V Valvag,D Johansen.Oivos:Simple and efficient distributed data processing .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2008.113-122.
  • 10Z Vrba,P Halvorsen,et al.Kahn process networks are a flexible alternative to mapreduce .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2009.154-162.

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部