期刊文献+

基于数据挖掘技术的旋转机械故障诊断研究 被引量:3

Study on Rotary Machinery Fault Diagnosis Based on Data Mining
下载PDF
导出
摘要 针对旋转机械故障诊断需人工干预、效率低、故障样本难获取等问题,提出基于数据挖掘技术的旋转机械故障诊断方法。提取不同故障的时域及频域特征频率,构成典型的故障样本数据库;采用粗糙集和决策树融合的诊断算法生成故障诊断的决策。用轴承故障诊断案例证明模型的有效性。 Considering the disadvantages existing in conventional fault diagnosis methods for rotating machinery, such as necessity of manual intervention, low efficiency and difficulty to obtain fault samples, a fault diagnosis method was proposed based on data mining technology. The characteristic frequency of time domain and frequency domain in different fault was extracted to build a typical fault samples database. Syncretic diagnosis algorithm of rough set and decision tree was used generate the decision-making of fault diagnosis. A diagnostic case of a bearing proves the effectiveness of the model.
作者 郭忠俊
出处 《煤矿机械》 北大核心 2014年第12期269-272,共4页 Coal Mine Machinery
关键词 数据挖掘 故障诊断 决策树 data mining fault diagnosis decision tree
  • 相关文献

参考文献3

二级参考文献5

共引文献33

同被引文献14

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部