期刊文献+

融合用户标签和关系的微博用户相似性度量 被引量:8

Similarity Measurement of Micro-blogging Users Merging User Tags and Relationships
下载PDF
导出
摘要 已有的微博用户相似性度量主要依据用户关系,实际上,在微博网络中,用户的标签信息直接表征了用户的兴趣爱好,是影响微博用户相似度的另一因素,为此,在网页相似度计算的基础上提出了融合用户关系和标签的微博用户相似性度量方法,该方法分别计算用户的链入标签相似度和链出标签相似度,并将其进行线性调和。实验从新浪微博采集实验数据,实验结果表明新方法对微博用户分类的准确率明显高于仅考虑用户关系的微博用户相似性计算方法。 Existing measurement methods of micro-blogging usersˊsimilarity are mainly based on user relationships. In fact, user tags can directly characterize userˊs interests, and is another impacting factor of user similarity. A new similarity measurement method of micro-blogging users based on webpage similarity computation is given, which effectively integrates user relationships and tags. The new method firstly computes the similarity of link-into tags and link-out tags, and then obtaines the final similarity by liner meditating the two. The experiment result based on data collected from Sina Weibo indicates that the classification accuracy of the new method is obviously higher than the method that only considers user relationships.
出处 《情报杂志》 CSSCI 北大核心 2014年第12期170-173,126,共5页 Journal of Intelligence
基金 中国博士后科学基金资助项目"基于量化术语关系的贝叶斯网络检索模型扩展研究"(编号:20070420700) 河北省自然科学基金资助项目"基于本体的贝叶斯网络信息检索模型扩展"(编号:F2011201146)
关键词 社交网络 微博用户 相似性度量 用户标签 用户关系 网页相似度 social networks micro-blogging users similarity measurement user tags user relationships webpage similarity
  • 相关文献

参考文献11

二级参考文献194

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Guy M,Tonkin E.Folksonomies:Tidying up tags-D-Lib Magazine,2006,12(1).[doi:10.1045/january2006-guy].
  • 4Sigurbj-rnsson B,van Zwol R.Flickr tag recommendation based on collective knowledge.In:Huai JP,Chen R,Hon HW,Liu YH,Ma WY,Tomkins A,Zhang XD,eds.Proc.of the 17th Int’l Conf.on World Wide Web.New York:ACM,2008.327-336.[doi:10.1145/1367497.1367542].
  • 5Hotho A,J-schke R,Schmitz C,Stumme G.Information retrieval in folksonomies:Search and ranking.In:Sure Y,Domingue J,eds.Proc.of the Semantic Web:Research and Applications,3rd European Semantic Web Conf.Heidelberg:Springer-Verlag,2006.411-426.[doi:10.1007/11762256_31].
  • 6Symeonidis P,Nanopoulos A,Manolopoulos Y.A unified framework for providing recommendations in social tagging systemsbased on ternary semantic analysis.IEEE Trans.on Knowledge and Data Engineering,2010,22(2):179-192.[doi:10.1109/TKDE.2009.85].
  • 7Harvey M,Baillie M,Ruthven I,Carman M.Tripartite hidden topic models for personalised tag suggestion.In:Gurrin C,He YL,Kazai G,Kruschwitz U,Little S,Roelleke T,Rüger SM,van Rijsbergen K,eds.Advances in Information Retrieval,the 32ndEuropean Conf.on IR Research.Heidelberg:Springer-Verlag,2010.432-443.[doi:10.1007/978-3-642-12275-0_38].
  • 8Blei DM,Ng AY,Jordan MJ.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022.[doi:10.1162/jmlr.2003.3.4-5.993].
  • 9Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Machine Learning,2001,42(1/2):177-196.[doi:10.1023/A:1007617005950].
  • 10Banerjee A,Basu S.Topic models over text streams:a study of batch and online unsupervised learning.In:Proc.of the 2007 SIAMInt’l Conf.on Data Mining.Philadelphia:SIAM,2007.431-436.

共引文献241

同被引文献70

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部