期刊文献+

基于压缩感知理论的谐波畸变电压信号采集方法研究 被引量:6

Study on harmonic distortion of voltage signal acquisition method based on compressed sensing theory
下载PDF
导出
摘要 针对电能质量信号参数变化快、数据采集量特别大的特点,论文对电能质量信号的压缩感知采集方法进行了研究,并根据电能质量信号检测的具体要求,改进了观测矩阵中轮换矩阵的构造方法,针对信号特征提高了低频段信号的权重,可以在较高压缩比条件下重构得到准确的信号。在不同压缩比条件下,对论文中提出的算法进行了仿真,并以谐波畸变电压信号为例,同采用高斯随机矩阵和传统轮换矩阵的算法进行了比较,仿真结果表明本方法压缩比高,信号重构效果好,性能稳定,优于传统轮换矩阵。 In view of the quick changing of power quality signal and large amount of data that need to be collected, we discussed application of compressed sensing theory to power quality signal acquisition in this paper. Also we demonstrated a new algorithm of constructing the rotation matrix according to the specific requirements for power quality signal, which we called weighted observation matrix. Regulating the weight could lead to reconstruct accura- cy change at different parts of signal independently. By adjusting the weight of different frequencies of signal ac- cording to signal characteristics known in advance and specific requirement to the measurement, this new algorithm has the ability to get more accurate reconstruction results of signal under higher compression ratio condition. The performance of this algorithm was evaluated under different compression ratios. Compared with classical observation matrix such as Gaussian random matrix and the traditional rotation matrix, our method demonstrated higher com- pression ratio, higher reconstruction accuracy and better robustness.
出处 《电工电能新技术》 CSCD 北大核心 2014年第11期61-64,69,共5页 Advanced Technology of Electrical Engineering and Energy
基金 国家自然科学基金资助项目(61174132)
关键词 电能质量 压缩感知 观测矩阵 轮换矩阵 power quality compressed sensing observation matrix rotation matrix
  • 相关文献

参考文献10

  • 1肖湘宁(XiaoXiangning).电能质量分析与控制[M].北京:中国电力出版社,2010.104.
  • 2David L Donoho. Compressed sensing [ J]. IEEE Transac- tions on Information Theory, 2006, 52 (4) : 1289-1306.
  • 3Emmanuel Candes, Justin Romberg, Terence Tao. Ro- bust uncertainty prineiples: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Transactions on Information Theory, 2006, 52 ( 2 ) : 489 -509.
  • 4Emmanuel Candes, Terence Tao. Near optimal signal re- covery from random projections: Universal encoding strat- egies? [ J]. IEEE Transactiols on Information Theory, 2006, 52 (12): 5406-5425.
  • 5Riehard Baraniuk, Mark Davenport, Ronald De Vore, et al. A simple proof of the restricted isometry property for random matrices [ J]. Constructive Approximation, 2008, 28 (3): 253-263.
  • 6Y Tsaig, D Donoho. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 549-571.
  • 7W Yin, S P Morgan, J Yang, et al. Practical compressive sensing with Toeplitz and cireulant matrices [ R]. Rice University CAAM Technical Report TR10-01, 2010.
  • 8W Bajwa, J Haupt, G Raz, et al. Toeplitz-structuredcompressed sensing matrices[ A ]. Proceedings of the IEEE Workshop on Statistical Signal Processing [ C ]. Washington D. C. , USA, 2007. 294-298.
  • 9F Sebert, Y M Zou, LYing. Toeplitz block matrices in compressed sensing and their applications in imaging [ A]. Proceedings of International Conference on Technol- ogy and Applications in Biomedicine [ C ]. Washington D. C. , USA, 2008. 47-50.
  • 10Holger Rauhnt. Circnlant and Toeplitz matrices in com- pressed sensing [ A]. Proceedings of SPARS' 09 [ C ]. Saint Malo, France, 2009.

同被引文献87

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部