期刊文献+

椭圆参考轨道卫星编队飞行的高阶积分滑模控制 被引量:3

Higher Order Integral Sliding Mode Control for Spacecraft Formations in Eccentric Reference Orbits
下载PDF
导出
摘要 针对椭圆参考轨道卫星编队飞行相对轨道控制问题,提出了一种以积分滑模为基础的高阶滑模相对轨道控制律.该控制律除具有高阶滑模抑制扰动的优点外,还具有使系统状态在有限时间稳定的特点,且控制精度高并具有全局鲁棒性.此外,还采用Lyapunov变换和自由变量变换将椭圆参考轨道的相对动力学方程转化为真近点角域中的量纲-形式,这种形式设计起来比较简单.仿真结果表明所设计的高阶积分滑模控制具有抑制控制律的扰动,燃料消耗少且控制精度高等优点. Considering the relative orbit control problem of spacecraft formations in eccentric reference orbits,this paper proposed a higher order integral sliding mode control law.This control law can not only restrain chattering,but also make system states converge to equilibrium points in finite time,and with high accuracy and global robust.Furthermore,the general relative equations of motion were transferred into non-dimensional form by using Lyapunov transformation.This form is easy for design.Numerical simulations demonstrate that the higher order integral sliding mode control can counteract chattering with optimal fuel consuming and high accuracy.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第10期1044-1048,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61104153) 国家"九七三"计划项目(2012CB720000)
关键词 高阶滑模 积分滑模 最优控制 真近点角 非线性不确定系统 higher order sliding mode integral sliding mode optimal control true anomaly nonlinear uncertainty system
  • 相关文献

参考文献7

  • 1Schmidt R, Escoubet C P, Coldstein M L. Phoenix and cluster II-towards a recovery from the loss of cluster [J]. Adv SpaceRes, 1997,20(4/5):575-579.
  • 2Carter T E. New form for the optimal rendezvous equations near a keplerian orbit [J ]. Journal of Guidance, Control, and Dynamics, 1990, 13 ( 1 ): 183 - 186.
  • 3于萍,张洪华.椭圆轨道编队飞行的典型模态与构型保持控制方法[J].宇航学报,2005,26(1):7-12. 被引量:11
  • 4Xing G Q, Parvez S A, Folta D. Implementation of au- tonomous GPS guidance and control for the spacecraft formation flying[C]//Proceedings of the 1999 American Control Conference. [S. l. ] : IEEE, 1999 ..4163 - 4167.
  • 5Godard, Kumar K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques[J]. Journal of Guidance, Control, and Dynamics, 2010,33(3) :969 - 984.
  • 6Jaime A M, Marisol O. Strict Lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012,57(4) : 1035 - 1040.
  • 7Rekasius Z V. An alternate approach to the fixed terminal point regulator problem[J]. IEEE Transactions on Automatic Control, 1964,9(3):290- 292.

二级参考文献3

  • 1Inalhan G, Tillerson M, How J P. Relative dynamics and control of spacecraft formations in eccentric orbits[J]. Journal of Guidance, Control, and Dynamics, 2002,25(1):48-59
  • 2Carter T E. New form for the optimal rendezvous equations near a keplerian orbit[J]. Journal of Guidance, Control, and Dynamics, 1990,13(1):1411-1416
  • 3林来兴.小卫星编队飞行组成虚拟卫星研究[J].863航天技术通讯,2000,(5):1-28.

共引文献10

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部