期刊文献+

基于最小二乘支持向量机的BLT方程孔缝散射模型

An Aperture Scattering Model for BLT Equation Based on Least Square Support Vector Machine
下载PDF
导出
摘要 孔缝电磁散射效应分析是开展复杂电子系统电磁防护研究的重要组成部分.基于微波二端口网络分析理论和电磁拓扑理论,构建了孔缝散射数学模型和广义散射矩阵,并提出了一种新的孔缝散射矩阵进化求解算法.对单矩形孔腔体HFSS数据进行了仿真分析,结果表明:散射矩阵对反射效应和透射效应的预测绝对误差均值为±1.2mVm和±3.3mV/m,相对误差均值为±0.17%和±8.29%;当预测精度为90%时,对反射效应和透射效应的最大预测绝对误差为±2.9mV/m和±0.763 5mV/m,最大预测相对误差为±0.39%和±0.93%,实现了孔缝散射效应的准确预测,验证了模型可靠性和实用性. The analysis on aperture scattering is an important composition of electromagnetic protection research on complex electronic system.A mathematic model of aperture scattering was built on the base of two-port network theory and electromagnetic topology theory,with which a generalized scatter matrix was designed.A data sieving strategy was formulized for least square support vector machine,based on which a new algorithm for aperture scattering matrix with evolving ability was proposed.By use of the simulation data of an rectangle aperture cavity's HFSS model,the aperture scattering model was tested.The mean absolute error of the forecasting about reflection and transmission are±1.2mV/m and±3.3mV/m,while the mean relative error are ±0.17% and ±8.29%.At the precision of 90%,the absolute error of forecasting about reflection and transmission are less than and,while the relative error are less than ±0.39% and ±0.93%,which means the aperture scattering is predicted accurately.The practicability and reliability of the method are proved.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第10期1073-1077,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60972042 61271250 61271100) 陕西省自然科学基金重点资助项目(2010JZ010)
关键词 电磁拓扑理论 BLT方程 散射矩阵 最小二乘支持向量机 electromagnetic topology BLT equation scattering matrix least square support vector machine
  • 相关文献

参考文献9

  • 1Baum C E, Liu T K, Tesche F M. On the analysis of general multi-conductor transmission-line networks[J]. Interaction Notes 350, 1978 : 1 - 38.
  • 2Tesche F M, Butler C M. On the addition of EM field propagation and coupling effects in the BLT equation [J]. Interaction Notes 588, 2003 : 1 - 43.
  • 3Tesche F M, Keen J, Butler C M. Example of the use of the BLT equation for EM field prapagation and coupling calculations[J]. Interaction Notes 591, 2004:1 - 34.
  • 4Baum C E. Including apertures and cavities in the BLT formalism [J]. Electromagnetics, 2005, 25 ( 7 - 8) 623 - 635.
  • 5王宝和.电磁拓扑中BLT方程的建立及应用研究[D].长沙:国防科技大学,2007.
  • 6魏明.设备级电磁脉冲效应仿真算法研究综述[J].军械工程学院学报,2009,21(6):50-53. 被引量:4
  • 7Verboven S, Guillaume P, Cauberghe P, et al. Model parameter estimation from input-output fourier data using frequency-domain maximum likelihood identification[J]. Journal of Sound and Vibration, 2004, 27(6) :957- 979.
  • 8Kim B, Stubbs N. A new method to extract model parameters using output-only responses[J]. Journal of Sound and Vibration, 2005,28(2) :215 - 230.
  • 9Chatterjee Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers and Operations Research, 2006,33(3): 859 - 871.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部