期刊文献+

采用网络分区与预计算策略的k近邻查询算法 被引量:1

K-nearest neighbors queries using network partitions and precomputation
原文传递
导出
摘要 k近邻查询是GIS和空间数据库等领域的研究热点。文章针对道路网络中的k近邻查询,通过分区以及预计算近邻集策略,获得查询点的k近邻结果:首先利用自适应格网分区方法将道路网络划分为若干格网单元,并存储格网内节点与边界点、边界点之间距离;其次在网络中的节点预先存储近邻集。实验证明,在兴趣点密度高、k值较大情况下,算法具有较好的性能。 k-nearest neighbors (kNN) queries is a hot topic in fields of GIS and spatial databases, et al. To get kNN of query points, the approach based on the existed road networks was proposed by partitioning road networks and precomputing NNs. First, the road networks were divided into grid cells, and the distances between nodes and border points were saved in tables, then the precomputed NNs were prestored in nodes of networks. The experiments result showed that the method could reduce the expensive shortest path computation and the search space, optimize kNN query algorithm with good performance.
出处 《测绘科学》 CSCD 北大核心 2014年第12期124-127,共4页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41301512 41101441) 安徽大学博士科研启动经费项目
关键词 道路网 K近邻查询 预计算 网络分区 GIS road networks kNN query precomputation network partitions GIS
  • 相关文献

参考文献8

  • 1Papadias D,et al.Query Processing in Spatial Network Databases[C]//Proceedings of the 29th International Conference on Very Large Data Bases.Berlin,Germany,2003:802-813.
  • 2Kolahdouzan M C Shahabi.Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases[C]//Proceedings of the 30th International Conference on Very Large Data Bases.Toronto,Canada,2004:765-777.
  • 3Huang X C,S Jensen,S Saltenis.The Islands Approach to Nearest Neighbor Querying in Spatial Networks[C]//Proceedings of the 9th International Symposium on Advances in Spatial and Temporal Databases.Berlin,Germany,2005:73-90.
  • 4肖晖,杨必胜.一种改进的基于道路网络距离的K近邻查询算法[J].武汉大学学报(信息科学版),2008,33(4):437-439. 被引量:5
  • 5Demiryurek U,F Banaei-Kashani C Shahabi.Efficient k-nearest Neighbor Search in Time-dependent Spatial Networks[C]//Proceedings of the 21st International Conference on Database and Expert Systems Applications.Bilbao,Spain,2011:432-449.
  • 6Geng Zhao,Kefeng Xuan,et al.Voronoi-Based Continuous k Nearest Neighbor Search in Mobile Navigation[C]//IEEE Transactions on Industrial Electronics,2012,58(6):2247-2257.
  • 7廖浩均,韩冀中,方金云.空间数据库中全局最近邻查询处理方法[J].计算机研究与发展,2011,48(1):86-93. 被引量:2
  • 8Benetis R,et al.Nearest and Reverse Nearest Neighbor Queries for Moving Objects[C]//Proceedings of the 32nd International Journal on Very Large Data Bases.Seoul,Korea,2006,15(3):229-249.

二级参考文献23

  • 1Shin H, Moon B, Lee S. Adaptive multi-stage distance join processing [J]. SIGMOD Record, 2000, 29(2) : 343-354.
  • 2Mamoulis N, Papadias D. Slot index spatial join [J]. IEEE Trans on Knowledge and Data Engineering, 2003, 15 (1): 211-231.
  • 3Zhang J, Mamoulis N, Papadias D, et al. All-nearest- neighbors queries in spatial databases [C] //Proc of the 2004 SSDBM Int Conf on Scientific and Statistics Data Base. Los Alamitos: IEEE Computer Society, 2004:297-306.
  • 4Goodrich M T, Tsay J J, Vengroff D E, et al. Externalmemory computational geometry[C] //Proc of the 1993 FOCS Annual Foundations of Computer Science. Los Alamitos: IEEE Computer Society, 1993:714-723.
  • 5Bohm C, Krebs F. High performance data mining using the nearest neighbor join [C] //Proc of the 2002 ICDM Int Conf on Data Mining. Los Alamitos: IEEE Computer Society, 2002:43-50.
  • 6Corral A, Manolopoulos Y, Theodoridis Y, et al. Closest pair queries in spatial databases[J]. SIGMOD Record, 2000, 29(2) : 189-200.
  • 7Xia C, Lu H, Ooi B C, et al. GORDER: An efficient method for KNN join processing [C] //Proc of the 2004 Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2004:946-957.
  • 8Papadopoulos A N, Nanopoulos A, Manolopoulos Y. Processing distance join queries with constraints [J]. The Computer Journal, 2006, 49(3) : 281-296.
  • 9Chen Y, Patel J M. Efficient evaluation of all nearestneighbor queries [C] //Proc of the 2007 Int Conf on Data Engineering. Los Alamitos: IEEE Computer Society, 2007: 1056-1065.
  • 10Berchtold S, B6hm C, Keim D, et al. A cost model for nearest neighbor search in high-dimensional data space [C] // Proc of the 1997 ACM SIGACT-SIGMOD-SIGART Syrup on Principles of Database Systems, New York: ACM, 1997:78-86.

共引文献5

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部