期刊文献+

基于DPM模型的行人检测技术的研究 被引量:4

Research on pedestrian detection based on DPM
下载PDF
导出
摘要 在行人检测领域,当场景很复杂时,一般行人检测算法往往得不到很好的检测效果。比如在行人很多且靠的很近时,用基于梯度直方图的检测算法时,检测效果不是很好。由P.Felzenszwa提出一种以可变形部件模型为基础的检测算法,能够检测多样变化的目标类型并且在挑战Pascal目标检测中达到较高水平。该算法使用隐变量支持向量机,是一种在支持向量机基础上添加潜在变量而重新构建的支持向量机。本文提出了一种基于可变形部件模型的行人检测算法,通过建立多人体模板,在行人相互靠近有重叠的场景下有着很好的检测效果。 In the field of pedestrian detection, when the scene is very complicated, generally the pedestrian detection algorithm tends to be not very good detection effect.Forexample,when pedestrians are many and very close, the detection effect is not very good ,that detection algorithm based on gradient histogram .Part basedobjectdetectionsystemwhichfromP.Felzenszwais based ondeformablepart models.This systemis able to dealwithhighlyvariableobjectclasses and achieves state-of-the-art results in the PASCALobjectdetectionchallenges.A latent SVM is a reformulation of SVM interms of latent variables.This paper proposes a pedestrian detection algorithm baseddeformable parts model, in the scenario of pedestrian near each other has a very good detection effect.
作者 熊聪 王文武
出处 《电子设计工程》 2014年第23期172-173,共2页 Electronic Design Engineering
关键词 行人检测 隐变量支持向量机 可变形部件模型 多人体模板 pedestrian detection LatentSVM deformable parts model multi-human modul
  • 相关文献

参考文献5

  • 1Hare A.Handbook of small group research[M].Macmillan, 1962.
  • 2Moussaid M,Perozo N,Gamier S, et al.The walking behaviour of pedestrian social groups and its impact on crowd dynamics[R].PLoS ONE,2010,5(4):e 10047.
  • 3Felzenszwalb P,GrishickR B, McAllister D,et al.Object detec- tion with discriminatively trained partbased models[C]//IEEE Trans. Pattern Anal. Mach. Intell.,2010(32):1627-1645.
  • 4Dalai N,Triggs B.Histograms of oriented gradients for human Detection [C]//IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition,San Diego,CA,2005 886-893.
  • 5卢虎,李彦,肖颖.支持向量机理论及其应用[J].空军工程大学学报(自然科学版),2003,4(4):89-91. 被引量:9

二级参考文献4

共引文献8

同被引文献34

  • 1FELZENSZWALB P F, GIRSHICK R B, MCALLESTE D, et al. Object detection with discriminatively trained part-based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.
  • 2GADESKI E, FARD H O, BORGNE H L. GPU deformable part model for object recognition[J]. Journal of Real-Time Image Processing, 2014:1-13.
  • 3DALAL N, TRIGG B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005, 1: 886-893.
  • 4CHEN Y, LI S, LIN X. Fast hog computation based on CUDA [C]// Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering. Piscataway: IEEE, 2011, 4: 748-751.
  • 5PEDERSOLI M, VEDALDI A, CONZALEZ J. A coarse-to-fine approach for fast deformable object detection[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1353-1360.
  • 6HIRABAYASHI M, KATO S, EDAHIRO M, et al. GPU implementations of object detection using HOG features and deformable models[C]// Proceedings of the 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications. Piscataway: IEEE, 2013: 106-111.
  • 7AMIT Y, KONG A. Graphical templates for model registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 225-236.
  • 8MUNSHI A, GASTER B R, MATTSON T G, et al. OpenCL编程指南[M]. 苏金国, 李璜, 杨健康, 译. 北京:机械工业出版社,2013:110-130.
  • 9WILT N. CUDA handbook: a comprehensive guide to GPU Pr[M]. SHU T, MA P, LIU S, translated. Beijing: China Machine Press, 2014:148-159.
  • 10黄茜,顾杰峰,杨文亮.基于梯度向量直方图的行人检测[J].科学技术与工程,2009,9(13):3646-3651. 被引量:19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部