期刊文献+

一种改进的基于块的图像修复算法

An improved image restoration algorithm based on the block
下载PDF
导出
摘要 在研究Criminisi算法的基础上,针对Criminisi算法修复顺序不可靠、采用固定大小的样本块模板尺寸以及在修复过程中容易产生误差累积等缺点,提出了一种改进的图像修复算法,该算法结合改进的优先项函数、根据梯度信息自适应选择模板大小等方法。实验结果表明,该算法易于实现,与Criminisi算法相比,能够取得更好的修复效果。 On the basis of researching Criminisi algorithm, to unreliable repair order, adopting fixed sample template size and easily producing cumulative error over the process of the repair in Criminisi algorithm, an improved image restoration algorithm is proposed. The algorithm consists in the improved priority function, choosing adaptively template size according to gradient information. The experimental results show that the algorithm is easy to implement, and can get better repair effect compared with Criminisi algorithm.
出处 《电子设计工程》 2014年第23期174-176,180,共4页 Electronic Design Engineering
关键词 图像修复 优先权 模板窗口 置信度 梯度 image restoration priority template window confidence item gradient
  • 相关文献

参考文献5

  • 1Bertalmio M,Sapiro G,Caselles V,et al. Image inpainting[C]// Proceedings of SIGGRA PH, ACM Press,2000: 417-424.
  • 2Chan T,Shen J. Mathematical models for local non-texture inpaintings [J]. SIAM Journal on Applied Mathematics,2001, 62(3):1019-1043.
  • 3Chan T,Shen J. Non-texture inpainting by curvature-driven diffusions (CDD)[J]. Journal of Visual Communication and Image Representation, 2001,12 (4):436-449.
  • 4范冠鹏,和红杰,陈帆,翟东海,仁青诺布.基于局部特性的图像修复算法[J].光电子.激光,2012,23(12):2410-2417. 被引量:4
  • 5孟春芝,何凯,焦青兰.自适应样本块大小的图像修复方法[J].中国图象图形学报,2012,17(3):337-341. 被引量:32

二级参考文献29

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2Drori I, Cohen-Or D, Yeshurun H. Fragment-based image completion[ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2003 : 303-312.
  • 3Criminisi A, Perez P, Toyama K. Object removal by exemplar- based inpainting [ C ]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: Wisconsin, 2003:721-728.
  • 4Andrei R, Marcel J T, Jan B. Edge-based image restoration [ J]. IEEE Transactions on Image Processing, 2005, 14 (10) : 1454-1468.
  • 5Sun J, Yuan L, Jia J Y, et al. Image completion with structure propagation [ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2035, 24 (3) : 861-868.
  • 6Shen M F, Li B. Structure and texture image iupainting based on region segmentation [ C ]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hawaii, USA : Honolulu, 2007: 701 -704.
  • 7Wang M Q, Han G Q, Tu Y Q. Edge-based image completing guided by region segmentation [ C ]// Proceedings of ISECS International Colloquium Computing, Communication,Control, and Management. Guangzhou, China: IEEE, 2008 : 152-156.
  • 8Wong A, Orchard J. A nonlocal-means approach to exemplar- based inpainting [ C ]// Proceedings of 2008 the 15th IEEE International Conference on Image Processing. San Diego, CA, USA: IEEE, 2008: 2600-2603.
  • 9Xu Z B, Sun J. Image inpainting by patch propagation using patch sparisty [ J]. IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.
  • 10Komodakis N, Tziritas G. Image completion using efficient belief propagation Via priority scheduling and dynamic pruning [ J ]. IEEE Transactions on Image Processing, 2007, 16 (11 ) : 2649- 2661.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部