期刊文献+

一种基于残余矩阵方差的主因子数估计方法

Estimation of the number of primary factors based on residual matrix variance ratio
下载PDF
导出
摘要 提出了一种基于残余矩阵方差的主因子数估计方法(RVR方法),判断标准是扣除不同因子后,残余矩阵方差显现出差异性.列出了RVR对模拟数据和实验数据的处理结果,并且与其他方法进行了比较,结果表明RVR方法对主因子数的估计效果较好. A method of estimating the number of primary factors based on residual matrix variance (RVR) was presented , whose criterion is the difference between reduced matrices after deducting different numbers of factors .Meanwhile ,the results of the simulated and experimental data obtained by using RVR were presented .A comparison between RVR and several typical methods indicates that RVR has good performance in estimating primary factors .
作者 陆玮 邵利民
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第11期881-886,共6页 JUSTC
基金 国家自然科学基金(21175123) 教育部新世纪优秀人才支持计划(NCET-11-0878)资助
关键词 主因子数 主成分分析 特征值 特征向量 残余矩阵 number of principal factors principal component analysis eigenvalue eigenvector reduced matrix
  • 相关文献

参考文献12

  • 1De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition [J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1 253-1 278.
  • 2Golub G H, Reinsch C. Singular value decomposition and least squares solutions [J ]. Numerische Mathematik, 1970,14(5) : 403-420.
  • 3Abdi H, Williams L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews: ComputationalStatistics, 2010,2(4): 433-459.
  • 4Chen Z P, Liang Y Z, Jiang J H, et al. Determination of the number of components in mixtures using a new approach incorporating chemical information [J]. Journal of Chemometrics, 1999,13(1): 15-30.
  • 5Rice J A, Silverman B W. Estimating the mean and covariance structure nonparametrically when the data are curves[J]. Journal of the Royal Statistical Society, 1991,53: 233-243.
  • 6Silverman B W. Smoothed functional principal components analysis by choice of norm[J]. The Annals of Statistics, 1996,24(1):1 -24.
  • 7Xu C J, Liang Y Z, Li Y, et al. Chemical rank estimation by noise perturbation in functional principal component analysis [J]. Analyst, 2003, 128 ( 1): 75-81.
  • 8Malinowski E R. Determination of rank by median absolute deviation (DRMAD): A simple method for determining the number of principal factors responsible for a data matrix[J]. Journal of Chemometrics, 2009, 23(1): 1-6.
  • 9Meloun M, Capek J, Miksik P, et al. Critical comparison of methods predicting the number of components in spectroscopic data [ J ]. Analytical Chimica Acta, 2000, 423(1): 51-68.
  • 10Malinowski E R. Determination of rank by augmentation (DRAUG) [J]. Journal of Chemometrics, 2011,25(6) : 323-358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部