期刊文献+

不同化学热力学建表参数对火焰面模型精度的影响研究

Effects of different parametrization strategies to flamelet modeling accuracy
下载PDF
导出
摘要 火焰面模型通过对燃烧过程的降维可以大幅减少求解燃烧场中化学反应所需的计算量.基于一维层流对撞火焰的数值解,构建了层流稳态火焰面模型(SFM)的化学热力学数据表并用于射流火焰的数值模拟.对所得到的火焰面数据表,分别采用基于混合分数和标量耗散率(Z,χZ)以及预混火焰面生成流形(FGM)方法中的混合分数和反应进度变量(Z,Yc)两种参数形式进行查表.通过火焰面坐标变换的方法,分析平面火焰中的流形特征,研究使用不同参数形式查询火焰面数据库对所得到的模拟结果的影响.两种查表方式得到的解与采用计算化学反应源项输运方程的直接数值求解方法(DNS)得到的解的对比结果表明,使用(Z,Yc)查表参数形式得到的解相比直接采用(Z,χZ)查表参数形式得到的解,更接近于DNS方法得到的解. Application of flamelet model can lead to great reduction in computational cost through dimensional reduction of chemistry reacting system during combustion simulation .Steady laminar flamelet model was introduced into plan flame simulation ,with both parametrization form (Z ,χZ ) and (Z ,Yc ) applied .A general flamelet transformation was performed to explain the effects of different parametrization strategies to flamelet modeling accuracy by analyzing manifolds characteristic for planar flames .Solutions obtained by direct numerical simulation (DNS) were introduced as a reference to verify modeling accuracy . Comparisons between solutions obtained by different parametrization strategies show that application of (Z ,Y c ) parametrization form can achieve more accurate solutions close to the DNS ones than (Z ,χZ ) form .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第11期960-966,共7页 JUSTC
基金 国家重点基础研究发展(973)计划(51176178)资助
关键词 层流稳态火焰面模型 火焰面生成流形 火焰面坐标变换 建表参数形式 steady laminar flamelet model flamelet generated manifold flamelet generated transformation flamelet parametrization strategy
  • 相关文献

参考文献17

  • 1Peters N. Laminar flamelet concepts in turbulent combustion [ J ]. Symposium ( International ) on Combustion, 1986, 21:1 231-1 250.
  • 2Peters N. Laminar diffusion flamelet models in non- premixed turbulent combustion [J]. Progress in Energy and Combustion Science, 1984, 10 ( 3 ) : 319-339.
  • 3Pitsch H, Wan Y, Peters N. Numerical Investigation of Soot Formation and Oxidation under Diesel Engine Conditions [R]. SAE, 1995.- 952357: doi: 10. 4271/952357.
  • 4Marracino B, Lentini D. Radiation modelling in non- luminous nonpremixed turbulent flames [ J ]. Combustion Science and Technology, 1997, 128: 23-48.
  • 5Barths H, Peters N, Brehm N, etal. Simulation of pollutant formation in a gas-turbine combustor using unsteady flamelets [ C]// Proceedings of the Symposium (International) on Combustion. Elsevier, 1998:1 841-1 847.
  • 6Coelho P, Peters N. Unsteady modelling of a piloted methane/air jet flame based on the Eulerian particle flamelet model [J]. Combustion and Flame, 2001,124(3): 444-465.
  • 7Pitsch H. Improved pollutant predictions in large-eddy simulations of turbulent non premixed combustion by considering scalar dissipation rate fluctuations [J]. Proceedings of the Combustion Institute, 2002, 29 (2) : 1 971-1 978.
  • 8Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
  • 9Oijen J V, Goey L D. Modelling of premixed laminar flames using flamelet-generated manifolds [J]. Combustion Science and Technology, 2000, 161 ( 1 ) .- 113-137.
  • 10Verhoeven L, Ramaekers W, Van Oijen J, et al. Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds [ J ]. Combustion and Flame, 2012, 159(1): 230-241.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部