期刊文献+

蜂蝇快速起飞过程的实验观测及力学分析 被引量:4

Experimental Measurement and Force Analysis of a Fast Takeoff in Dronefly
原文传递
导出
摘要 通过实验观测蜂蝇的快速起飞过程,并计算分析其中的力学过程。利用三维高速图像测量技术观测了整个过程中身体及翅膀的运动学参数,并且扫描记录了昆虫的形态学数据。采用所测得数据处理得到起飞过程中的惯性力和力矩,利用计算流体力学(CFD)方法计算翅膀拍动产生的气动力,由力学平衡得到腿部作用力。在快速起飞时经过2次完整拍动其拍动幅角增大到最大值,经过4次完整拍动之后拍动频率变为恒定,并且昆虫完全升入空中。离地之前主要由腿部作用力支撑体重及产生向上的加速度,同时在水平和俯仰转动方向消除气动力产生的不利影响,直到离地时腿部作用力变为零。表明蜂蝇具备通过增加腿部用力来达到快速起飞从而躲避天敌的能力,相比自主起飞缩短了起飞时间,也为人造微小型飞行器(MAV)的不同起飞模式的设计提供了思路。 An experimental measurement of a fast takeoff in dronefly is projected and the force analysis is presented here.Wing and body kinematics of the insect during takeoff are measured using high-speed video techniques and the morphological data are recorded.Based on the measured data,the inertia force acting on the insect is computed and the aerodynamic force of the wings is calculated by the method of computational fluid dynamics (CFD).The leg force is determined according to force balance.In the takeoff,the stroke amplitude reaches a maximum value after two completed wingbeats,and after four wingbeats the wingbeat frequency stays constant and the insect is airborne.The leg force plays a primary role in the body raise movement and decreases the influence of aerodynamic force in horizontal and pitch motion,and decreases to zero when the insect is airborne.These indicate that droneflies get the ability to take off quickly to avoid predators using their legs,and the takeoff duration decreases compared with the voluntary takeoff.It is also an inspiration for the takeoff mode of man-made micro air vehicle (MAV).
作者 陈茂伟 孙茂
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第12期3222-3231,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11232002) "111"计划(B07009)~~
关键词 蜂蝇 起飞 运动学 高速摄像机 空气动力学 计算流体力学 腿部作用力 dronefly takeoff kinematics high speed video aerodynamics computational fluid dynamics leg force
  • 相关文献

参考文献21

  • 1Chen M W, Zhang Y L, Sun M. Wing and body motion and aerodynamic and leg forces during take-off in drone- flies[J]. Journal of the Royal Society Interface, 2013, 10 (89) : 20130808.
  • 2Sunada S, Kawachi K, Watanabe I, et al. Performance of a butterfly in take-off flight[J]. Journal of Experimental Biology, 1993, 183(1): 249-277.
  • 3Pond C M. The initiation of flight in unrestrained locusts, schistocerca gregaria[J]. Journal of Comparative Physiol- ogy, 1972, 80(2): 163-178.
  • 4Rogers S E, Kwak D, Kiris C. Numerical solution of the incompressible Navier-Stokes equations for steady-state and dependent problems[J]. AIAA Journal, 1991, 29 (4) : 603-610.
  • 5Mou X L, Liu Y P, Sun M. Wing motion measurement and aerodynamics of hovering true hoverflies[J] Journal of Experimental Biology, 2011, 214(17): 2832-2844.
  • 6Rogers S E, Pulliam T H. Accuracy enhancements for overset grids using a defect correction approach, AIAA- 1994-0523[R]. Reston: AIAA, 1994.
  • 7Zhang S J, Zhao X, Guan H W. Development of arbitrary unstructured chimera grid, AIAA-2014-0778 [ R]. Res ton: A1AA, 2014.
  • 8Card G, Dickinson M H. Performance trade-offs in the flight initiation of drosophila[J]. Journal of Experimental Biology, 2008, 211(3): 341-353.
  • 9杨文青,宋笔锋,宋文萍.高效确定重叠网格对应关系的距离减缩法及其应用[J].航空学报,2009,30(2):205-212. 被引量:16
  • 10Aono H, Llang F, Liu H, Near- and far-field aerodynam- ics in insect hovering flight: an integrated computational study[J]. Journal of Experimental Biology, 2008, 211 (2) : 239:257.

二级参考文献35

  • 1刘鑫,陆林生.重叠网格预处理技术研究[J].计算机工程与应用,2006,42(1):23-26. 被引量:6
  • 2Slotnick J P, Kandula M, Buning P G. Navier-Stokes simulation of the space shuttle launch vehicle flight tran sonic flowfield using a large scale chimera grid system [R]. AIAA 94 1860,1994.
  • 3Meakin R L. Object X rays for cutting holes in composite overset structured grids[R]. AIAA-2001-2537,2001.
  • 4Steger J. Notes on composite overset grid schemes-chimera [D]. Davis: University of California,1992.
  • 5Suhs N E, Rogers S E, Dietz W E. PEGASUS 5: an automate pre-processor for overset-grid CFD [J]. AIAA Journal, 2003, 41 (6): 1037-1045.
  • 6Meakin R L. A new method for establishing intergrid communication among systems of overset grids[R]. AIAA- 1991-1586,1991.
  • 7Neef M F, Hummel D. Euler solutions for a finite-span flapping wing, fixed and flapping wing aerodynamics for micro air vehicle applications[M]. United States of America: American Institute of Aeronautics and Astronautics, 2001,195: 429-451.
  • 8Shyy W, Lian Y S, Tang J, et al. Aerodynamics of low Reynolds number flyers[M]. New York: Cambridge University Press, 2008.
  • 9Batina J T. Unsteady Euler algorithm with unstructured dynamic mesh for complex aircraft aerodynamic analysis [J]. AIAA Journal, 1991, 29(3): 327- 333.
  • 10Burg O E. A robust unstructured grid movement strategy using three-dimensional torsional springs [R]. AIAA 2004 2529, 2004.

共引文献47

同被引文献43

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部