期刊文献+

结合吸附技术的对转压气机改型设计 被引量:2

Redesign of Counter-rotating Compressor with Boundary Layer Suction
原文传递
导出
摘要 应用附面层抽吸技术和叶型优化设计方法对某双排对转轴流压气机进行了改型设计数值研究,旨在指导下一步的实验研究。近喘点时,原始出口导流叶片(OGV)尖部叶型存在着严重的气流分离现象。优化设计后,气流在叶型前缘加速平缓,通道内回流区所占比例明显降低,OGV 70%叶展以上的总压损失系数平均降低了38.4%,压气机等熵效率提高了0.3%。在转子2(R2)尖部叶型66%弦长轮缘端壁处开设1mm宽抽吸槽,当近喘点的相对质量抽吸量为1%时,R2尖部的负荷水平改善明显,65%叶展以上等熵效率平均提高了10%。尖部流场的改善对于下游OGV产生了积极的效应,速度三角形的重构使轮缘端壁处的角区分离被限制在了很小的范围内,85%叶展以上的总压损失系数平均降低了25%。通过抽吸,压气机等熵效率又获得了0.5%的收益。 Boundary layer suction and blade optimization are employed in the redesign of a dual-stage counter-rotating compressor with numerical simulation.Further experimental research will be carried out according to the numerical results.At near stall point,there is serious flow separation at the tip region of the original outlet guide vane (OGV).Airfoil optimization makes smooth acceleration at the leading edge,and decreases the recirculation zone in the blade passage.Up to 70% spanwise of OGV,total pressure loss coefficient has a 38.4% drop in average.Isentropic efficiency of the compressor is improved by 0.3%.An axisymmetric suction slot located at 66% chordwise of Rotor 2 (R2) tip region with 1 mm width is designed at the shroud case.1% comparative mass flow at near stall point can optimize the loading level of R2 tip region,bringing a 10%improvement in average on R2 isentropic efficiency in higher spanwise from 65%.These result in a positive effect on the flow condition of the OGV:corner separation is limited to a smaller region,total pressure loss coefficient has a 25% drop in average in the region up to 85% spanwise,and the isentropic efficiency of the compressor is further improved by 0.5%.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第12期3254-3263,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51236006)~~
关键词 附面层抽吸 叶型优化设计 对转压气机 轮缘端壁 数值模拟 boundary layer suction blade optimization design counter-rotating compressor shroud endwall numerical simulation
  • 相关文献

参考文献19

  • 1刘大响.航空动力发展的历史性机遇[J].航空发动机,2005,31(2):1-3. 被引量:6
  • 2Car D, Puterbaugh S L, Bailie S T. Turbomachinery fluid mechanics and control, AFRL-RZ-WP TR-2010 2026[R], 2010.
  • 3周敏,李航航,唐侃平.叶型附面层分离流动控制技术研究进展[J].航空工程进展,2011,2(3):298-304. 被引量:7
  • 4Reijnen D P. Experimental study of boundary layer suc- tion in a transonic compressor [ D]. Cambridge, MA: Massachusetts Institute of Technology, 1997.
  • 5Kerrebrock J L, Drela M A, Merchant A A, et al. A family of designs for aspirated compressors, ASME Pa- per, 98-GT-196[R]. Washington, D. C. : ASME, 1998.
  • 6Schuler B J, Kerrebrock J L, Merchant A A, et al. De- sign, analysis, fabrication and test of an aspirated fan stage, ASME Paper, 2000-GT-618[R]. Washington, D. C. : ASME, 2000.
  • 7Merchant A A. Aerodynamic design and performance of aspirated airfoils, ASME Paper, 2002-GT30369[R]. Washington, D. C. : ASME, 2002.
  • 8Kerrebrock J L, Adamczyk J J, Shabbir A, et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery, 2008, 130(2) : 021004-1-021004-8.
  • 9Gbadebo S A, Cumpsty N A, Hynes T P. Control of three-dimensional separations in axial compressor by tai- lored boundary layer suction[J]. Journal of Turbomachin- ery, 2008, 130(1): 011004-1-011004-8.
  • 10Godard A, Fourmaux A, Burguburu S, et al. Design method of a subsonic aspirated cascade, ASME Paper, 2008-GT-50835[R]. Washington, D. C. : ASME, 2008.

二级参考文献71

共引文献50

同被引文献28

  • 1陈懋章,刘宝杰.中国压气机基础研究及工程研制的一些进展[J].航空发动机,2007,33(1):1-9. 被引量:12
  • 2Broichhausen K D, Ziegler K U. Supersonic and transonic compressor: Past, status and technology trends, GT2005-69067[R]. New York: ASME, 2005.
  • 3Puterbaugh S L, Car D, Bailie S T. Turbomachinery fluid mechanics and control, AFRL-RZ-WP-TR-2010-2026[R].OH: Compressor Aero Research Laboratory Fan and Compressor Branch, Wright-Patterson Air Force Base,2010.
  • 4Mercan B, Dog^an E, Ostovan Y, et al. Experimental investigation of the effects of waveform tip injection in a low pressure turbine cascade, GT2012-69316[R]. New York: ASME, 2012.
  • 5Niu M S, Zang S S. Experimental and numerical investigation of tip injection on tip clearance flow in an axial turbine cascade[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1214-1222.
  • 6Saddoughi S, Bennett G, Boespflug M, et al. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators[J]. Journal of Turbomachinery, 2015, 137(4): 041008-1-10.
  • 7Coull J D, Atkins N R, Hodson H P. Winglets for improved aerothermal performance of high pressure turbines[J]. Journal of Turbomachinery, 2014, 136(9): 091007-1-11.
  • 8Heyes F J G, Hodson H P, Dailey G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery, 1992, 114(3): 643-651.
  • 9Jung S P, Sang H L, Jae S K. Measurement of blade tip heat transfer and leakage flow in a turbine cascade with a multi-cavity squealer tip, TBTS2013-2072[R]. New York:ASME, 2013.
  • 10Li W, Jiang H M, Zhang Q. Squealer tip leakage flow characteristics in transonic condition[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(4): 042601-1-7.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部