期刊文献+

可列非齐次隐Markov模型的强大数定律

Strong law of large numbers for countable nonhomogeneous hidden Markov models
下载PDF
导出
摘要 隐马尔科夫模型被广泛的应用于弱相依随机变量的建模,是研究神经生理学、发音过程和生物遗传等问题的有力工具.研究了可列非齐次隐Markov模型的若干性质,得到了这类模型的强大数定律,推广了有限非齐次马氏链的一类强大数定律. Hidden Markov models have been widely used for modeling sequences of weakly dependent random variables, with application in areas such as speech processing, neurophysiology and biology. In this paper, we study some properties of countable nonhomogeneous hidden Markov models, get the strong law of large numbers for those Markov models and extend a class of the strong law of large numbers for finite nonhomogeneous Markov chains.
机构地区 江苏大学理学院
出处 《纯粹数学与应用数学》 CSCD 2014年第6期618-626,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(11071104)
关键词 可列非齐次隐Markov模型 强大数定律 非齐次马尔科夫链 countable nonhomogeneous hidden Markov models strong law of large numbers nonhomogeneous Markov chains
  • 相关文献

参考文献12

  • 1Lacrz B, Lasala P, Lekuona A. Dynamic graphical models and nonhomogeneous hidden Markov models [J].Stat. Probab. Letts., 2000,49:377-385.
  • 2Bates B C, Charles S P, Hughes P. Stochastic downscaling of numerical climate model simulations [J].Envrionmental Modelling Software, 1998,13:325-331.
  • 3Leroux B G. Maximum-likelihood estimation for hidden Markov models [J]. Stochastic Processes and theirAppl., 1992,40:127-143.
  • 4Bickel P, Ritov Y, Ryden T. A smptotic normality of the maximum-likelihood estimation for general hiddenMarkov models [J]. The Annals of Statistics, 1998,26(4):1614-1635.
  • 5Ephrain Y, Merhav N. Hidden Markov process [J]. 2002,48(6):1518-1569.
  • 6龚光鲁,钱敏平.应用随机过程[M].北京:清华大学出版社,2004.
  • 7吴小太,杨卫国.隐非齐次马尔可夫模型的强大数定律[J].数学杂志,2011,31(2):314-322. 被引量:1
  • 8吴小太,吴艳蕾.隐非齐次马尔可夫模型的强大数定律[J].纯粹数学与应用数学,2009,25(3):502-507. 被引量:1
  • 9Chung K L. A Course in Probability Theory [M]. 2nd ed, New York: Academic Press, 1974.
  • 10Yang W G. The asymptotic equipartition property for a nonhomogeneous Markov information source [J].Probability in the Engineering and Informational Science, 1998,12:509-518.

二级参考文献21

  • 1杨卫国,吴小太,王豹.一类隐马尔可夫模型的若干极限性质[J].江苏大学学报(自然科学版),2006,27(5):467-470. 被引量:3
  • 2Leroux B G. Maximum-likelihood estimation for hidden Markov models[J]. Stochastic process Appl., 1992, 40: 127-143.
  • 3Genon-Catalot V, Laredo C. Leroux's method for general hidden Markov models[J]. Stochastic process Appl., 2006, 116: 222-243.
  • 4Bickel P J, Ritov R, Ya'acov T R. Asmptotic normality of the maximum-likelihood estimator for general hidden markov models[J]. Ann. Statist., 1998, 26(4): 1614-1635.
  • 5Maxwell M, Woodroofe M. A local limit theorem for hidden Markov chains[J]. Stat. Probab. Letts., 1997, 32: 125-131.
  • 6Beatriz L, Pilar L, Alberto L. Dynamic graphical models and nonhomogeneous hidden Markov models[J]. Statistics Probability Letters, 2000, 49: 377-385.
  • 7Bryson C, Bates S. Stochastic downscaling of numerical climate model simulations[J]. Environmental Modelling Software, 1998, 13: 325-331.
  • 8Liu W, Yang W G. A class of strong limit theorems for the sequences of arbitrary random variables[J]. Stat. Probab. Letts., 2003, 64: 121-131.
  • 9Liu W, Yang W G. An extension of Shannon-Mcmillan theorem and some limit properties for nonhomogeneous Markov chains[J]. Stochastic Process. Appl., 1996, 61: 129-145.
  • 10Liu W, Yang W G. An extension of Shannon-Mcmillan theorem and some limit properties for nonhomogeneous Markov chains[J]. Stochastic Process. Appl., 1996, 61:129-145.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部