期刊文献+

向量优化中集合的一些相对代数性质和相对拓扑性质

Some relative algebraical properties and relative topological properties of sets in vector optimization
下载PDF
导出
摘要 基于Flores-Bazn等人的思想,提出了假设B1和假设B2,证明了集合和的相对代数内部等于相对代数内部的和;集合代数闭包与相对代数内部的和等于和的相对代数内部;集合和的相对拓扑内部等于相对拓扑内部的和;集合拓扑闭包与相对拓扑内部的和等于和的相对拓扑内部,建立了集合代数闭包相等与代数内部相等,拓扑闭包相等与拓扑内部相等之间的一些等价关系. In this paper, the Assumption B1 and B2 are proposed basing on the idea of Flores-Baz′an et al. The relative algebraic interior of the sum for two sets is equal to the sum of the relative algebraic interior for these sets, the sum of the algebraic closure of a set and the relative algebraic interior of a set is equal to the sum of the relative algebraic interior for the two sets, the relative topological interior of the sum for two sets is equal to the sum of the relative topological interior for these sets, the sum of topological closure of set and the relative topological interior of set is equal to the sum of the relative topological interior for the two sets are proved. Furthermore, the equivalent relations between equality of the algebraic closure and the equality of algebraic interior are established. We also obtain the similar equivalent relations for the topological closure and the relative topological interior.
作者 张万里 林安
出处 《纯粹数学与应用数学》 CSCD 2014年第6期642-648,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(11301574 11171363)
关键词 向量优化 假设B 相对代数性质 相对拓扑性质 vector optimization Assumption B relative algebraical properties relative topological properties
  • 相关文献

参考文献10

  • 1史书中.凸分析[M].上海:上海科学技术出版社,1990.
  • 2Jahn J. Vector Optimization: Theory, Applications and Extensions [M]. New York: Springer, 2011.
  • 3Debreu G. Theory of Value [M]. New York: John Wiley, 1959.
  • 4Bonnisseau J M, Crettez B. On the characterization of efficient production vectors [J]. Economic Theory,2007,31(2):213-223.
  • 5Tammer C, Zalinescu C. Lipschitz properties of the scalarization function and applications [J]. Optimization,2010,59(2):305-319.
  • 6Flores-Bazan F, Hernandez E. A unified vector optimization problem: complete scalarizations and applica-tions [J]. Optimization, 2011,60(12):1399-1419.
  • 7Flores-Bazan F, Hernandez E. Optimality conditions for a unified vector optimization problem with notnecessarily preordering relations [J]. Journal of Global Optimization, 2013,56:299-315.
  • 8Zhao K Q, Xia Y M. A kind of unified proper efficiency in vector optimization [J]. Abstract and AppliedAnalysis, Article ID 636907, 2014.
  • 9Flores-Bazan F, Laengle S. Characterizing efficiency on infinite-dimensional commodity spaces with orderingcones having possibly empty interior [J]. Journal of Optimization Theory and Applications, Doi: 10.1007/s10957-014-0558-y, 2014.
  • 10Tanaka T, Kuroiwa D. The convexity of A and B assures int A + S = int(>l + B) [J]. Applied MathematicsLetter, 1993,6(1):83-86.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部