摘要
在实赋范线性空间中,给出了广义近似等腰正交和广义近似保等腰正交映射的定义,得到了广义近似保等腰正交线性映射的一些充分条件,证明了非零广义近似保等腰正交线性映射有界并且是下有界的,推广了近似保等腰正交线性映射的定义和结论.
In real normed linear spaces,the definition of generalized approximate isosceles-orthogonality preservingmapping is given. Some sufficient conditions for a linear mapping to be a generalized approximate isosceles-orthogonalitypreserving mapping are given. Then it is proved that the nonzero generalized approximate isosceles-orthogonalitypreserving mapping is bounded and bounded below,which is a generalization of approximate isosceles-orthogonalitypreserving linear mapping.
出处
《河南科学》
2014年第12期2434-2439,共6页
Henan Science
基金
陕西省科技厅科研项目(2012JM1018)
陕西省教育厅科研项目(2013JK0570)
商洛学院科研项目(14SKY016)
关键词
等腰正交
近似等距
近似等腰正交
广义近似保等腰正交映射
isosceles-orthogonality
approximate isometry
generalized approximate isosceles-orthogonality
generalized approximate isosceles-orthogonality preserving mapping