期刊文献+

基于并行的非支配排序遗传Ⅱ算法优化双聚类 被引量:1

Optimization Biclustering Algorithm Based on Parallel Non-Dominated Sorting Genetic AlgorithmⅡ
下载PDF
导出
摘要 双聚类是微阵列基因表达数据分析中很实用的一种数据挖掘技术,它是一种同时对微阵列基因和条件进行聚类的方法,用来挖掘基因子集在条件子集下所体现出来的生物模式。传统的双聚类算法对于庞大的基因表达数据处理效率很弱,考虑在j Metal平台上实现基因表达数据的双聚类的一种新的研究方法及思路。同时考虑加入并行策略,提高算法的效率。在酵母啤酒细胞基因表达集和人类B-细胞两个标准数据集上对两个算法进行实验验证,表明所提出算法比其他多目标双聚类算法呈现出更好的优越性。 Biclustering is a very practical data mining technique in microarray gene expression data analysis and it is a way to cluster both microarray genes and conditions simultaneously, which is used to excavate the biological mode reflected by the gene subset set under the condition subset. The processing efficiency of traditional bielustering algorithm for large gene expression data is low, so this paper explores a new research method and idea, i.e. applying gene expression data bielustering on jMetal platform. Also the parallel strategy is proposed to improve the efficiency of the algorithm. Experiments on two datasets, yeast cell dataset and human B-cell dataset, show that our approach exhibits better and more stable performance than other multi-objective bielustering algorithms.
出处 《大理学院学报(综合版)》 CAS 2014年第12期15-21,共7页 Journal of Dali University
关键词 基因表达数据 双聚类jMetal 并行算法 遗传算法 gene expression data biclustering j Metal parallel algorithm genetic algorithm
  • 相关文献

参考文献17

  • 1DIVINA F, AGUILAR, RUIZ J S. A multi-objective ap- proach to discovery biclusters in microarray data [C]//Pro- ceedings of the 9th annual conference on Genetic and evolu- tionary computation.2007:385-392.
  • 2刘军万,李舟军,陈义明,刘飞飞.微阵列数据的多目标免疫优化双聚类[J].生物信息学,2009,7(3):234-237. 被引量:1
  • 3朱娴,许建华.基于模拟退火粒子群优化的基因数据双聚类算法[J].计算机与应用化学,2013,30(1):93-96. 被引量:6
  • 4赖丽娜.整合贪婪随机构造和多目标粒子群模型的双聚类算法在基因表达数据中的应用[D].长春:吉林大学,2014.
  • 5郭红,蔡莉.采用多目标微分进化算法的基因表达数据双向聚类[J].小型微型计算机系统,2010,31(10):1997-2001. 被引量:3
  • 6WOLF T, HOFMANN B T. Global biclustering of microar- ray data [C]//Proceeding of the Sixth IEEE International Conference on Data Mining-Workshops (ICDMW'06). 2006: 125-129.
  • 7DURILLO J J, NEBRO A J. jMetal: a Java Framework for Multi-Objective Optimization [J~. Advances in Engineer- ing Software, 2011 (42) :760-771.
  • 8DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space [J]. Complex Systems, 1995 (9): 115.
  • 9WANG H, WANG W, YANG J, et al. Clustering by pat- tern similarity in large data sets [C]//Proceedings of the 2002 ACM SIGMOD international conference on Manage- ment of data. 2002:394-405.
  • 10RAQUEL C, NAVAL P J. An effective use of crowding distance in multi-objective particle swarm optimiza- tion [C]// Proceedings of the 2005 conference on Genetic and evolutionary computation. 2005: 257-264.

二级参考文献41

  • 1张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 2Cheng Y and Church G. M.. Biclustering of expresion data[J]. Proc Int Conf Intell Syst Mol Biol, 2000,8:93- 103.
  • 3Tanay A., Sharan R. and Shamir R.. Discovering statistically significant biclusters in gene expression data[ J]. Bioinformatics, 2002, 18 (S1) :136- 144.
  • 4Ben - Dor A., Chor B., Karp R., et al. Discovering Local Structure in Gene Expression Data: The Order- Preserving Submatrix Problem[J]. Journal of Computational Biology, 2003, 10(3 - 4) : 373 - 384.
  • 5Bleuler S, Prelic A and Zitzler E. An EA framework for biclustering of gene expression data[ C ]. Proc . 2004 Congress on Exolutionary Computation (CEC2004) ,2004.
  • 6Mitra S. and Banka H.. Multi-objective evolutionary biclustering of gene expression data[J]. Pattern Reoognition,2006,39(12) :2464 - 2477.
  • 7Divina F. and Aguilar - Ruiz J.S.. A multi - objective approach to discover biclusters in microarray data[C]. Proceedings of the 9th annual conference on Genetic and evolutionary, computation, 2007,385 - 392.
  • 8Jiao L. and Wang L.. A novel genetic algorithm based on immunity [J] . Systems, Man and Cybernetics, Part A, IEEE Transactions on, 2000, 30(5) : 552 - 561.
  • 9Coello C. and Cortes N.. An approach to solve multiobjective optimization problems based on an artificial immune system[ C]. First International Conference on Artificial Immune Systems (ICARIS' 2002 ), 21302 : 212 - 221.
  • 10Burner F.. Clonal Selection and After[ J ]. Theoretical Immunology, 1978,63:85.

共引文献13

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部