期刊文献+

树上的限制性node multicut问题 被引量:2

Restricted Node Multicut Problem in Trees
下载PDF
导出
摘要 割集问题在图论和组合优化中占有重要地位,限制性node multicut问题是割集问题的一类比较重要的推广问题。树上的限制性node multicut问题是值得研究的一个问题。首先说明此问题是NP难的,其次用线性规划理论中的互补松弛条件设计了一个近似值2且时间复杂度为O(max{kn,n log n})的算法。并进一步说明了通过算法得到的解具有半整数的性质。 The problem of cut set holds an important position in graph theory and combinatorial optimization and restricted node multicut is a significant problem in cut set. And restricted node multicut problem in trees is worth studying. The paper first explains that the node multicut problem is hard, then designs an algorithm with the approximate value of 2 and time complexity of by applying complementary slackness conditions in linear programming theory, and finally further explains the solution from the algorithm is a half-integer.
作者 杨惠娟
出处 《大理学院学报(综合版)》 CAS 2014年第12期21-25,共5页 Journal of Dali University
关键词 限制性node multicut 近似算法 互补松弛条件 restricted node multicut approximation algorithm complementary slackness conditions
  • 相关文献

参考文献14

  • 1拉文德拉K.阿胡亚,托马斯L.马南提,詹姆斯B.沃琳,等.网络流理论算法与应用[M].北京:机械工业出版社,2005:207-240.
  • 2刘振宏,蔡茂诚.组合最优化:计算机算法和复杂性[M].北京:清华大学出版社,1988:248-269.
  • 3STEFAN K, MARCIN P, MICHAL P.Fixed-parameter trac- tability of multieut in directed acyclic graphs [J].Computer Science, 2012(7391 ):581-593.
  • 4JORGEN B J, ANDERS Y.The complexity of muhicut and mixed muhicut problems in (di)graphs[J]. Theoretical Computer Science, 2014(520):87-96.
  • 5HUT C. Multicommodity network flows [J].Oper Res, 1963 (9):898-900.
  • 6DAHLHAUS E, JOHNSON D S, PAPADIMITRIOU C H, et al. The complexity of multiterminal cuts [J].SIAM J Corn-put, 1994,23 (4) :864- 894.
  • 7CHAWLA S, KRAUTHGAMER R, KUMAR R, et al. On the hardness of approximating muhicut and sparsest- cut[J]. Computational Complexity,2006,15(2):94-114.
  • 8GARG N, VAZIRANI V, YANNAKAKIS M. Primal-dual approximation algorithms for integral flow and muhicut in trees [ J J.Algorithmica, 1997 (18) :3 -20.
  • 9Costa M C, Letocart L, Roupin F. A greedy algorithm for muhicut and integral multiflow in rooted trees [J~.Opera- tions Research Letters, 2003 (31 ): 21-27.
  • 10CALINESCU G, FERNANDES C G, REED B. Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width [J~. Journal of Algorithms, 2003 (48) :333-359.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部