摘要
对于任意初始矩阵,运用求解Sylvester矩阵方程的正交迭代算法可以在有限步内得到方程的最小二乘解,而且通过选择初始矩阵还可以得到方程的极小范数最小二乘解,这种算法还能用于解决最佳逼近问题,数值例子表明了所提出算法的有效性。
In this paper ,an orthogonal iterative algorithm for solving Sylvester matrix equations is proposed. Using the iterative algorithm,a/east-square solution of Sylvester matrix equations for any initial matrix can be obtained within finite iteration steps. Furthermore,the least-square solution with the minimum norm can be obtained by choosing a special initial matrix. The algorithm can also be applied to solve optimal approximation problems, Finally, the algorithms is tested on computer and the results verify the theoretical findings.
出处
《江南大学学报(自然科学版)》
CAS
2014年第6期731-735,共5页
Joural of Jiangnan University (Natural Science Edition)
基金
国家自然科学基金项目(11301227)