期刊文献+

求解Sylvester方程的正交迭代算法

Orthogonal Iterative Algorithm for Sylvester Equations
下载PDF
导出
摘要 对于任意初始矩阵,运用求解Sylvester矩阵方程的正交迭代算法可以在有限步内得到方程的最小二乘解,而且通过选择初始矩阵还可以得到方程的极小范数最小二乘解,这种算法还能用于解决最佳逼近问题,数值例子表明了所提出算法的有效性。 In this paper ,an orthogonal iterative algorithm for solving Sylvester matrix equations is proposed. Using the iterative algorithm,a/east-square solution of Sylvester matrix equations for any initial matrix can be obtained within finite iteration steps. Furthermore,the least-square solution with the minimum norm can be obtained by choosing a special initial matrix. The algorithm can also be applied to solve optimal approximation problems, Finally, the algorithms is tested on computer and the results verify the theoretical findings.
机构地区 江南大学理学院
出处 《江南大学学报(自然科学版)》 CAS 2014年第6期731-735,共5页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(11301227)
关键词 Sylvester矩阵方程 正交迭代算法 最小二乘解 极小范数解 最佳逼近问题 Sylvester matrix equation,orthogonal iterative algorithm,least-square solution,minimum norm solution optimal approximation problem
  • 相关文献

参考文献10

二级参考文献54

  • 1袁永新.关于一类线性矩阵方程的对称解[J].工程数学学报,1998,15(3):25-29. 被引量:34
  • 2袁永新,戴华.矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解[J].高等学校计算数学学报,2005,27(3):232-238. 被引量:16
  • 3Yasuda K, Skelton R E. Assigning controllability and observability Graminans in feedback control[J].J.Guidance Control, 1990,14(5): 878-885
  • 4Fujioka H, Hara S. State covariance assignment problem with measurement noise:a unified approach based on a symmetric matrix equation[J]. Linear Algebra Appl., 1994,203/204: 579- 605
  • 5Chu k.-W. E. Symmetric solutions of linear matrix equation by matrix decompositions[J]. Linear Algebra Appl., 1989,119:35-50
  • 6Ben-Israel A, Greville T N E. Generalized inverse: Theory and Applications. 2nd Edition, NewYork: Springer Verlag, 2003
  • 7Peng Z Y. An iterative method for the least aquares symmetric solution of the linear matrix equation AXB = D. Appl. Math. Comput., 2005, 170:711-723
  • 8Braden H W. The equations A^TX±X^TA = B. SIAM J. Matrix Anal.Appl., 1998,20(2): 295-302
  • 9Stewart G W. Computing the CS-decomposition of a partitioned orthogonal matrix. Numer.Math., 1982,40:297-306
  • 10Richard H B,Stewart G W.Solution of the Matrix Equation AX+XB=C(Algorithm 432)[J].Commun ACM,1972,22:820-826.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部