期刊文献+

基于码书的雾天图像质量评价方法研究 被引量:3

Research on Foggy Image Quality Assessment Based on Codebook
下载PDF
导出
摘要 近年来,无参考图像质量评价发展迅速,但是对雾天图像质量进行评价的无参考算法还鲜有报道。该文提出了一种基于码书的无参考雾天图像质量评价算法。目的是使该方法评价雾天图像质量的结果与人类主观感知相一致。寻找能反映雾天图像质量的特征,运用这些特征构建码书,然后用码书对训练图像进行编码得到训练图像的特征向量,最后用这些向量与训练图像的主观评分进行回归得到雾天图像质量评价模型。该方法在仿真的雾天图像库中进行了测试,结果表明:Pearson线性相关系数和Spearman等级相关系数值都在0.99以上。并与经典的无参考算法NIQE和CONIA方法进行了比较,优于这些算法,能够很好地预测人对雾天图像的主观感知。 In recent years, no-reference image quality assessment has developed rapidly. However, algorithm about foggy image quality assessment has nearly reported. Our paper proposes an algorithm of foggy image quality assessment based on codebook. The goal of our paper is made our assessment consequence consistence with human opinion scores. Our method is to search the feature that can reflect foggy image quality, structure codebook using this feature, acquiring feature vector by encoding the training images using the codebook, the last, going the regression between the feature vector and the human opinion scores of the training images. Our algorithm have tested on foggy image database, the result shows that PLCC and SROCC both exceed 0.99 and is better than no-reference image quality assessment algorithm of NIQE and CONIA, our algorithm can predict perception of foggy image.
出处 《图学学报》 CSCD 北大核心 2014年第6期876-882,共7页 Journal of Graphics
基金 安徽省自然科学基金资助项目(1208085MF97)
关键词 雾天图像 图像质量 评价方法 无参考 码书 foggy image image quality evaluation methodology no-reference codebook
  • 相关文献

参考文献16

  • 1郭璠,蔡自兴.图像去雾算法清晰化效果客观评价方法[J].自动化学报,2012,38(9):1410-1419. 被引量:58
  • 2李大鹏,禹晶,肖创柏.图像去雾的无参考客观质量评测方法[J].中国图象图形学报,2011,16(9):1753-1757. 被引量:77
  • 3Wang Zhou, Sheikh H R, Bovik A C. No-reference perceptual quality assessment of JPEG compressed images [C]//IEEE International Conference on Image Processing, New York: IEEE Conference Publications, 2002: 1-477-1-480.
  • 4Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG2000 [J]. IEEE Trans on Image Process, 2005, 14(11): 1918-1927.
  • 5Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices [J]. IEEE Trans on Signal Process, 2010, 17(5): 513-516.
  • 6Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain [J]. IEEE Trans on Image Process, 2012, 21(12): 4695-4708.
  • 7Ye Peng, Doermann D. No-reference image quality assessment based on visual codebook [C]//IEEE International Conference on Image Processing, Brussels: IEEE Conference Publications, 2011: 3089-3092.
  • 8Ye Peng, Kumar J, Kang Le, Doermann D. Unsupervised feature leaming framework for no-reference image quality assessment [C]//International Conference on Computer Vision and Pattern Recognition, IEEE Conference Publications, 2012: 1098-1105.
  • 9Xue Wufeng, Zhang Lei, Mou Xuanqin. Learning without human scores for blind image quality assessment [C]// International Conference on Computer Vision and Pattern Recognition, Portland: IEEE Conference Publications, 2013: 995-1002.
  • 10Mittal A, Soundararajan R, Bovik A C. Making a 'completely blind' image quality analyzer [J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.

二级参考文献27

  • 1Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 2Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 3KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 4Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 5姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 6Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 7Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 8Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.
  • 9Chambah M, Rizzi A, Gatta C, et al. Perceptual approach for unsupervised digital color restoration of cinematographic archives [C]//Proceedings of SPIE Conference on Color Imaging VIII: Processing, Hardcopy, and Applications. Washington, USA : SPIE, 2003.5008 :138-149.
  • 10Jean-Philippe T. Single Image Visibility Restoration Comparison [ EB/OL]. [ 2010- 08- 07 ] . http://perso, lcpc. fr/tarel, jeanphilippe/visibility/.

共引文献119

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部