期刊文献+

K-均值聚类模糊逻辑数据融合改进算法研究 被引量:2

An Improved Fusion Method of Fuzzy Logic Based on K-Mean Clustering
下载PDF
导出
摘要 针对无线传感网(WSN)数据融合中基于模糊逻辑的加权融合算法融合结果误差偏大的问题,提出了一种基于K-均值聚类的改进的模糊逻辑加权融合算法.首先运用K-均值聚类的思想分析收集到的原始误差数据,去除算法认为不可靠的数据,用余下的有效数据对修正模糊逻辑算法求得加权因子,并与节点测量数据加权平均求值,得到最终融合值.实验证明:通过与其它同类的加权融合算法比较,该改进算法的融合精度更高,效果更好. For the problem of large deviation of data fusion based on weighted fuzzy logic algorithm in wireless sensor networks, a new method is proposed. First to eliminate the flawed data through analysis of initial data using the idea of K-mean clustering, and to revise the weighting factors of weighted fuzzy logic algorithm with the rest authentic data, and then intergrate all data by means of weighted method to get the final fusion re- suit. Experimental results show that this method can achieve higher integration accuracy compared with the other same fusion methods.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第6期699-703,共5页 Journal of North University of China(Natural Science Edition)
基金 山西省自然科学基金资助项目(2012011013-4) 山西省高等学校留学回国人员科研资助项目(晋教外[2011]号) 山西省普通高校特色重点学科建设资助项目
关键词 无线传感网络 数据融合 模糊逻辑 K-均值聚类 wireless sensor networks data fusion fuzzy logic algorithm K-mean clustering
  • 相关文献

参考文献13

  • 1Luo Hong, Tao Huixiang, Ma Huadong, et al. Data fu-sion with desired reliability in wireless sensor nerwors[J].IEEE Computer Society, 2012,23(3) : 501-513.
  • 2康健,左宪章,唐力伟,张西红,李浩.无线传感器网络数据融合技术[J].计算机科学,2010,37(4):31-35. 被引量:50
  • 3付华,杜晓坤.基于Bayes估计理论的数据融合方法[J].自动化技术与应用,2005,24(4):10-12. 被引量:21
  • 4万树平.基于Fisher信息的多传感器数据融合方法[J].传感技术学报,2008,21(12):2035-2038. 被引量:9
  • 5Mao Zhe, Zhang Zhuoran, Lu Yaling. The data fusion inmulti-sensors grain information monitoring system basedon improved BP neural networks [ C ]. Guangzhou : 2012International Conference on Information Technology andManagement Innovation, 2012.
  • 6崔智军,王庆春.基于D-S证据理论的多传感器数据融合[J].现代电子技术,2011,34(12):201-204. 被引量:10
  • 7Lu Guang, Xue Wei. Adaptive weighted fusion algorithmfor monitoring system of forest fire based on wireless sen-sor networks [ C ]. Sanya : 2010 International Conferenceon Computer Modeling and Simulation, 2010.
  • 8Alexander B, Marc M. Low-complexity distributed totalleast squares estimation in ad HOC sensor networks [ J ].Institute of Electrical and Electronics Engineers Inc,2012,60(8): 4321-4333.
  • 9Manjunatha P, Verma A K, Srividya A. Multi-sensordata fusion in cluster based wireless sensor networks usingfuzzy logic method[C]. India Kharagpur: IEEE Region10 Colloquium and the Third ICIIS, 2008.
  • 10Singh A K, Purohit N, Varma S. Fuzzy logic basedclustering in wireless sensor networks : a survey [ J ].Taylor and Francis Ltd, 2013,100(1) : 126-141.

二级参考文献69

共引文献104

同被引文献12

  • 1Camps-Vails Gustavo, Marsheva Tatyana V. Bandos, ZHOU Dengyong. Semi-supervised graph-based hyperspectral image classification [J]. IEEE Transactions on Geoscienee and Remote Sensing(S0196-2892), 2007, 45(10): 3044-3054.
  • 2Papadopoulos Dimitris F, Simos Theodore E. A modified runge-kutta-nystr6m method by using phase lag properties for the numerical solution of orbital problems [J]. Applied Mathematics & Information Seienees(S 1935-0090), 2013, 7(2): 433-437.
  • 3Kannan S R, Ramathilagam S. Effective fuzzy c-means clustering algorithms for data clustering problems [J]. Expert Systems withApplieations(S0957-4174), 2012, 39(7): 6292-6300.
  • 4ZHAO Weizhong, HE Qing, MA Huifang. Effective semi-supervised document clustering via active learning with instance-level constraints [J]. Knowledge & Information Systems(S0219-1377), 2012, 30(3): 569-587.
  • 5Ozer Sedat, CHEN Chi H. A set of new chebyshev kernel function for support vector machine pattern classification [J]. Pattern Reeognitlon(S0031-3203), 2011, 44(7): 1435-1447.
  • 6ZHANG Rui, WANG Wenjian. Facilitating the application of support vector machine by using a new kernel [J]. Export Systems withApplieations(S0957-4174), 2011, 38(11): 14225-14230.
  • 7张慧哲,王坚.基于初始聚类中心选取的改进FCM聚类算法[J].计算机科学,2009,36(6):206-209. 被引量:68
  • 8陈小冬,尹学松,林焕祥.基于判别分析的半监督聚类方法[J].计算机工程与应用,2010,46(6):139-143. 被引量:3
  • 9谢娟英,郭文娟,谢维信,高新波.基于样本空间分布密度的初始聚类中心优化K-均值算法[J].计算机应用研究,2012,29(3):888-892. 被引量:53
  • 10赵春晖,齐滨.基于模糊核加权C-均值聚类的高光谱图像分类[J].仪器仪表学报,2012,33(9):2016-2021. 被引量:19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部