期刊文献+

一种改进的基于偏微分方程图像的降噪算法 被引量:3

An Improved Image Denoising Algorithm Based on Partial Differential Equation
下载PDF
导出
摘要 针对图像去噪过程中存在边缘保持与噪声抑制之间的矛盾,提出了一种改进的基于偏微分模型的图像去噪算法.引入了正则化、绝对差值排序检测法,结合Chao和Tsai模型,构造了一种新的扩散系数函数,兼具了正则化解决方程病态问题和绝对差值排序检测法有效区分噪声与边缘的优点.实验结果表明:与其他基于常用偏微分模型的去噪算法相比,所提算法能更加有效地去除噪声,保留了更多的细节信息,提高了图像去噪的信噪比. Concerning the contradiction between edge - preserving and noise - suppressing in the process of image denoising, an improved image denoising method was proposed based on partial differential equation (PDE) model. Regularization and rank-ordered absolute differences were introduced into the proposed algo- rithm, which constructed a new diffusion coefficient combined with the model of Chao and Tsai. The method takes advantages of the regulation and rank-ordered absolute differences, so it can solve ill-posed problem of the equation and distinguish between noise and edges more effectively. Experimental results show that the proposed method can retain more information of details and get rid of noise better than the other common PDE models, and improve the SNR of image denoising.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第6期745-749,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61071192 61271357 61171178) 山西省国际合作项目(2013081035) 山西省研究生优秀创新项目(2009011020-2 20123098) 中北大学第十届研究生科技基金项目(20131035) 山西省高等学校优秀青年学术带头人支持计划资助项目
关键词 边缘保持 噪声抑制 偏微分方程 正则化 绝对差值排序检测 病态问题 edge-preserving noise-suppressing partial differential equation regularization rank-ordered ab- solute differences ill-posed problem
  • 相关文献

参考文献15

  • 1崔学英,张权,刘祎,付学敬,桂志国.用于图像复原的二阶与四阶结合的偏微分方程滤波[J].中北大学学报(自然科学版),2013,34(2):183-187. 被引量:4
  • 2Dai Fang, Zheng Nanning, Xue Jianru. Image smoothingand sharpening based on nonlinear diffusion equation [ J ].Signal Processing, 2008, 88 (11): 2850- 2855.
  • 3Black M J, Sapiro G, Marimont D H, et al. Robustanisotropic diffusion [ J ]. IEEE Transaction on ImageProcessing, 1998, 7(3): 421-432.
  • 4Xu R, Chen Y W. Wavelet-based multiresolution medicalimage registration strategy combining mutual informationwith spatial information [J ]. International Journal of In-novative Computing,Information and Control,2007,3(2):285-296.
  • 5张权,罗立民,桂志国,马杰.一种基于优化参数的非局部均值滤波算法[J].计算机应用与软件,2012,29(3):78-81. 被引量:17
  • 6张权,桂志国,刘祎,马杰.医学图像的自适应非局部均值去噪算法[J].计算机工程,2012,38(7):182-184. 被引量:12
  • 7Perona P, Malik J. Scale-space and edge detection usinganisotropic diffusion [ J ]. IEEE Trans on Pattern AnalMachine Intell, 1990,12(7) : 629-639.
  • 8Catte F, Lion P L, Morel J M, et al. Image selectivesmoothing and edge detection by nonlinear diffusion [ J ].SIAM Journal on Numerical Analysis, 1992, 29 (1):182-193.
  • 9Chao S M, Tsai D M. An improved anisotropic diffusionmodel for detail and edge-preserving smoothing [J ]. Pat-tern Recognition Letters,2010,31 (13) : 2012-2023.
  • 10You Y L, Kaveh M. Fourth-order partial differentialequations for noise removal [ J ]. IEEE Transactions onImage Processing, 2000, 9(10): 1723-1730.

二级参考文献69

  • 1朱立新,王平安,夏德深.非线性扩散图像去噪中的耦合自适应保真项研究[J].计算机辅助设计与图形学学报,2006,18(10):1519-1524. 被引量:12
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 1990, 12(7): 629-639.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1- 4): 259-268.
  • 4Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29(1) : 182-193.
  • 5You Y L, Kaveh M. Fourth-order partial differential equations for noise removal [J]. IEEE Trans on Image Processing, 2000, 9(10) : 1723-1730.
  • 6Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 2004, 26 (8): 1020-1036.
  • 7Lee S H, Seo J K. Noise removal with Gauss curvaturedriven diffusion [J]. IEEE Trans on Image Processing, 2005, 14(7): 904-909.
  • 8Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
  • 9Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden markov models [J]. IEEE Trans on Signal Processing, 1998, 46(4) : 886-902.
  • 10Portilla J, Strela V, Wainwright M J, et al, Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Trans on Image Processing, 2003, 12(11) : 1338-1351.

共引文献48

同被引文献46

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部