摘要
针对图像去噪过程中存在边缘保持与噪声抑制之间的矛盾,提出了一种改进的基于偏微分模型的图像去噪算法.引入了正则化、绝对差值排序检测法,结合Chao和Tsai模型,构造了一种新的扩散系数函数,兼具了正则化解决方程病态问题和绝对差值排序检测法有效区分噪声与边缘的优点.实验结果表明:与其他基于常用偏微分模型的去噪算法相比,所提算法能更加有效地去除噪声,保留了更多的细节信息,提高了图像去噪的信噪比.
Concerning the contradiction between edge - preserving and noise - suppressing in the process of image denoising, an improved image denoising method was proposed based on partial differential equation (PDE) model. Regularization and rank-ordered absolute differences were introduced into the proposed algo- rithm, which constructed a new diffusion coefficient combined with the model of Chao and Tsai. The method takes advantages of the regulation and rank-ordered absolute differences, so it can solve ill-posed problem of the equation and distinguish between noise and edges more effectively. Experimental results show that the proposed method can retain more information of details and get rid of noise better than the other common PDE models, and improve the SNR of image denoising.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2014年第6期745-749,共5页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金资助项目(61071192
61271357
61171178)
山西省国际合作项目(2013081035)
山西省研究生优秀创新项目(2009011020-2
20123098)
中北大学第十届研究生科技基金项目(20131035)
山西省高等学校优秀青年学术带头人支持计划资助项目
关键词
边缘保持
噪声抑制
偏微分方程
正则化
绝对差值排序检测
病态问题
edge-preserving
noise-suppressing
partial differential equation
regularization
rank-ordered ab- solute differences
ill-posed problem