期刊文献+

裂缝诱导双相HTI介质模型及其弹性波传播方程 被引量:3

Fracture-induced two-phase HTI medium model and its elastic wave propagation equations
下载PDF
导出
摘要 将Biot双相介质理论与Gurevich裂缝各向异性理论相结合,建立了能够同时考虑实际裂缝性储层孔隙性和各向异性的裂缝诱导双相HTI介质模型。从本构方程、动力学方程和动力学达西定律出发,推导出了裂缝诱导双相HTI介质中弹性波传播的一阶速度-应力方程,并针对方程的刚性问题,给出了利用显式二阶时间积分法数值求解该方程时所需要满足的稳定性条件。该方程能够定量地给出双相HTI介质的波场特征与裂缝参数、背景孔隙介质参数之间的关系,描述弹性波在这种介质中的传播机理。 Fracture-induced two-phase horizontal transverse isotropic (HTI) medium model has been established by combining Biot two-phase media theory with Gurevich fracture anisotropic theory,which can consider porosity and anisotropy of realistic fractured reservoir simultaneously.According to the constitutive equations,the dynamical equations and the dynamic Darcy's law,one-order velocity-stress elastic wave propagation equation has been derived.As to the stiffness problems of the equation,the stability condition is given when the equations are solved numerically by second-order explicit time integration algorithm.The equation can quantitatively present the relationships between the characteristics of wave field with fracture parameters and the parameters of background poroelastic media,and reveals the mechanisms of seismic wave propagation in this media.
出处 《世界地质》 CAS CSCD 2014年第4期904-909,933,共7页 World Geology
基金 国家自然科学基金项目(40974054) 国家973计划项目(2013CB429805)联合资助
关键词 BIOT理论 Gurevich模型 裂缝诱导 HTI介质 一阶速度-应力方程 Biot theory Gurevich model fracture-induced HTI media one-order velocity-stress equations
  • 相关文献

参考文献19

  • 1Nelson R A. Geological analysis of naturally fractured reservoirs [ M ]. Boston: Gulf Professional Publishing House, 2001: 59-63.
  • 2Gurevich B, Brajanovski R, Galvin R J, et al. P-wave dispersion and attenuation in fractured and porous reser- voirs-poroelasticity approach [ J ]. Geophysical Prospec- ting, 2009, 57 (2) : 225-237.
  • 3Thomsen L. Elastic anisotropy due to aligned cracks in porous rock [ J]. Geophysical Prospecting, 1995, 43: 805 -829.
  • 4Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks [ J ]. Geophysical Journal of the Royal Astronomical Society, 1984, 64 : 133-150.
  • 5Schoenberg M, Sayers C M. Seismic anisotropy of frac- tured rock [J]. Geophysics, 1995, 60 (1):204-211.
  • 6Gurevich B. Elastic properties of saturated porous rocks with aligned fractures [J]. J Appl Geopbys, 2003, 54: 203-218.
  • 7Biot M A. Theory of propagation of elastic waves in a flu- id-saturated porous solid, Part I : low frequency range [J]. JAcoustSocAm, 1956, 28 (1): 168-178.
  • 8Biot M A. Theory of propagation of elastic waves in a flu- id-saturated porous solid, Part ]I : high frequency range [J]. J Acoust Sue Am, 1956, 28 (2) : 179-191.
  • 9杜启振,孔丽云,韩世春.裂缝诱导各向异性双乳隙介质波场传播特征[J].地球物理学报,2009,52(4):1049-1058. 被引量:30
  • 10Du Q z, Wang X M, Ba J, et al. An equivalent medi- um model for wave simulation in fractured porous rocks [J]. Geophysical Prospecting, 2012, 60 (5): 940- 956.

二级参考文献76

共引文献61

同被引文献91

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部