期刊文献+

动态增殖流形学习算法在机械故障诊断中的应用 被引量:8

A dynamic incremental manifold learning algorithm and its application in fault diagnosis of machineries
下载PDF
导出
摘要 针对现有的批量式流形学习算法无法利用已学习的流形结构实现新增样本的快速约简的缺点,提出增殖正交邻域保持嵌入(Incremental Orthogonal Neighborhood Preserving Embedding,IONPE)流形学习算法。该算法在正交邻域保持嵌入算法基础上利用分块处理思想实现新增样本子集的动态约简。从原始样本中选取部分重叠点合并至新增样本,对重叠点和新增样本子集不依赖原始样本使用正交邻域保持嵌入(ONPE)进行独立约简获取低维嵌入坐标子集,并基于重叠点坐标差值最小化原则,将新增样本低维嵌入坐标通过旋转平移缩放整合到原样本子集中。齿轮箱故障诊断案例证实了IONPE算法具有良好的增量学习能力,在继承ONPE优良聚类特性的同时有效提高了新增样本约简效率。 The current batch manifold learning algorithms can't achieve rapid dimension reduction of additional samples with learned manifold structures. Here,the incremental orthogonal neighborhood preserving embedding( IONPE)manifold learning algorithm was proposed. With it,dynamic incremental learning for additional samples was realized with a block processing idea based on orthogonal neighborhood preserving embedding. Firstly,some overlapping points were selected from the original samples and added to the additional samples. Secondly, the subset of low-dimensional embedding coordinates of additional samples was obtained with ONPE independing on the original samples. Finally,based on the principle of minimizing the differences of the overlapping point coordinates,the low-dimensional embedding coordinates of the additional samples were integrated into the original samples with rotating, shifting and scaling transformations. The fault diagnosis case of a gearbox confirmed that the IONPE algorithm has a good incremental learning ability,it improves the processing efficiency of the additional samples while inheriting the superior clustering performance of ONPE.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第23期15-19,29,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51275546) 高校博士点专项科研基金(20130191130001)
关键词 增殖流形学习 正交邻域保持嵌入 动态约简 分块处理 故障诊断 incremental manifold learning ONPE dynamic reduction block processing fault diagnosis
  • 相关文献

参考文献9

  • 1Li F, Tang B P, Yang R S. Rotating machine fault diagnosis using dimension reduction with linear local tangent space alignment[J]. Measurement, 2013, 46:2525-2539.
  • 2Jiang Q S, Jia M P, Hu J Z, et al. Machinery fault diagnosis using supervised manifold learning [ J ]. Mechanical Systems and Signal Processing, 2009, 23:2301 -2311.
  • 3Kouropteva O, Okun O, Pietikanen M. Incremental locally linear embedding [ J ]. Pattern Recognition, 2005,38 : 1764 - 1767.
  • 4Liu X M, Yin J W, Feng Z L et al. Incremental manifold learning via tangent space alignment [ C ]//Proceedings of the Second International Conference on Artificial Neural Networks in Pattern Recognition. Ulm, Germany,2006 : 107 - 121.
  • 5Law M H C, Jain A K. Incremental nonlinear dimensionality reduction by manifold learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28 ( 3 ) : 337 - 391.
  • 6杨庆,陈桂明,童兴民,何庆飞.增量式局部切空间排列算法在滚动轴承故障诊断中的应用[J].机械工程学报,2012,48(5):81-86. 被引量:11
  • 7张熠卓,徐光华,梁霖,张锋,李淑智.利用增量式非线性流形学习的状态监测方法[J].西安交通大学学报,2011,45(1):64-68. 被引量:9
  • 8曾宪华,罗四维.动态增殖流形学习算法[J].计算机研究与发展,2007,44(9):1462-1468. 被引量:13
  • 9Saul L, Roweis S. Think globallyl Fit locally: Unsupervised learning of low dimensional manifolds [ J ]. Journal of Machine Learning Research, 2002, 4 : 119 - 155.

二级参考文献28

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 2阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158. 被引量:31
  • 3ZHANG Zhenyue, ZHA Hongyuaru Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J]. SlAM Journal on Scientific Computing, 2004, 26(1) : 313-338.
  • 4HE Qingbo, KONG Fanrang, YAN Ruqiang. Subspace-based gearbox condition monitoring by kernel principal component analysis [J]. Mechanical Systems and Signal Processing, 2007,21 (4) : 1755-1772.
  • 5LIU Xiaoming, YIN Jianwei, FENG Zhilin, et al. Incremental manifold learning via tangent space alignment [J]. Artificial Neural Networks in Pattern Rec- ognition, 2006,4087: 107-121.
  • 6KOUROPTEVA O. Unsupervised learning with locally linear embedding algorithm: an experimental study [D]. Finland: University of Joensuu. Department of Computer Science and Statistics, 2001.
  • 7LOPARO K A. Bearings vibration data set, case western reserve university [DB/OL]. [2008- 12-05]. http:// www. eecs. cwru. edu/laboratory/bearing/down-load. html.
  • 8LAW H C, JAIN K. Incremental nonlinear dimensionality reduction by manifold learning [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(3) : 377-391.
  • 9B Scholkopf,A Smola,K R Müller.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319
  • 10J Tenenbaum,V de Silva,J Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323

共引文献29

同被引文献82

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部