期刊文献+

基于多重随机k维树地震搜索引擎的建立

ESTABLISMENT OF EARTHQUAKE SEARCH ENGINE BASED ON MULTIPLE RANDOMIZED KD-TREE
下载PDF
导出
摘要 描述了数据库的构建、利用多重随机k维树建立地震搜索引擎的过程。通过实际搜索测试,证明了利用地震搜索引擎确定震源信息的可行性,并探讨了其存在的问题及相应的改进措施。结果表明,地震搜索引擎能够自动、快速的确定震源信息,具有很强的实用性。 The process to build a database and set up the earthquake search engine by using multiple randomized kD-Tree was described in this paper. And by practical tests, the feasibility of finding focal information by earthquake search engine was proved. There was also discussion of the existing problems and the measures for improvement. The result shows that earthquake search engine can find focal information automatically and quickly. It has a very strong practicability.
出处 《防灾减灾学报》 2014年第4期66-69,共4页 Journal of Disaster Prevention And Reduction
关键词 多重随机k维树 地震搜索引擎 地震波形 震源信息 multiple randomized kD-Tree earthquake search engine seismic waveform focal mechanism
  • 相关文献

参考文献5

  • 1丁南南,刘艳滢,张叶,陈春宁,贺柏根.基于SURF-DAISY算法和随机kd树的快速图像配准[J].光电子.激光,2012,23(7):1395-1402. 被引量:40
  • 2Pujari A K. Data mining techniques[M]. Universities press, 2001.
  • 3Bentley J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.
  • 4Muja M, Lowe D G. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration[C]//VISAPP (1), 2009: 331-340.
  • 5Jia Y, Wang J, Zeng G, et al. Optimizing kd-trees for scalable visual descriptor indexing[C]//Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010: 3392-3399.

二级参考文献19

  • 1Matungka R, Zheng Y F, Ewing R L. Image Registration Using Adaptive Polar Transform[J].IEEE Transactions on Image Processing, 2009,18 (1 O) : 2340-2354.
  • 2Song Z L,Li S,George T F. Remote sensing image regis- tration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories [J]. Optics Express, 2010,18(2) : 513-522.
  • 3Wong A. An adaptive monte carlo approach to phase- based multimodal image registration[J]. IEEE Transac- tions on Information Technology in Biomedicine, 2010, 14 (1) :173-179.
  • 4Xiong Z,Zhang Y. A critical review of image registration methods[J]. International Journal of Image and Data Fu- sion, 2010,1 (2) : 137-158.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vis. ,2004,60(2) : 91-110.
  • 6Bay H,Tuvtellars T,Gool L Van. SURF: speeded up ro- bust features[J]. Computer Vision and Image Understand- ng,2008,110(3):346-359.
  • 7Rong W, Chen H, et al. Mosaicing of Microscope Images based on SURF[C]. 24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009) ,2009, 272-275.
  • 8Bouchiha R, Besbes K. Automatic remote-sensing image registration using SURF[C]. 2010 The 3rd International Conference on Machine Vision (ICMV 2010), 2010,406- 410.
  • 9Tola E,Lepetit V. A fast local descriptor for dense matc- hing[C]. IEEE Computer Society Conference on Comput- er Vision and Pattern Recognition. Washington, DO: IEEE Computer Society, 2008,1-8.
  • 10Tola E, Lepetit V. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010,32 (5) : 815-830.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部