期刊文献+

基于相似性的装备剩余寿命预测研究 被引量:5

Research on Similarity-Based Remaining Useful Life Prediction of Equipment
下载PDF
导出
摘要 为了更有效估计装备的剩余寿命,对基于相似性的寿命预测方法进行研究。首先介绍基于相似性的寿命预测方法的基本概念和流程,然后研究基于高斯核回归的退化轨迹提取方法,在传统欧氏距离的基础上,考虑时间范围的影响,改进相似度计算方式,最后用高斯核密度估计得到剩余寿命的区间估计值.一个数值仿真试验表明,基于相似性的方法能够利用失效历史样本对装备的剩余寿命进行有效预测. In order to estimate the remaining useful life (RUL)of equipment more effectively,an RUL prediction method based on similarity is put forward.In this paper,the basic concept and procedure are introduced first,and then the degrading traj ectories are extracted using the Gaussian kernel regression.The traditional similarity function based on Euclidean distance is improved by considering time frame.Finally,Gaussian kernel density estimation is applied to estimate the probability of RUL.A data experiment shows that the method based on similarity can use the failure life history of samples for effective prediction.
出处 《军械工程学院学报》 2014年第5期13-17,共5页 Journal of Ordnance Engineering College
关键词 相似性 装备 剩余寿命预测 similarity equipment RUL prediction
  • 相关文献

参考文献7

二级参考文献147

  • 1Heng A, Zhang S, Tan A C C, et al. Rotating machinery prognostics: state of the art, challenges and opportunities [J]. Mechanical Systems and Signal Processing, 2009, 23 (3) : 724 -739.
  • 2Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance [J]. Mechanical Systems and Signal Processing, 2006, 20(7) : 1483 - 1510.
  • 3Saranga H, Knezevic J. Reliability prediction for condition- based maintenance systems [J]. Reliability Engineering and System Safety, 2001, 71(2): 219-224.
  • 4Camci F. Process monitoring, diagnoslics and prognostics using support vector machines and hidden Markov models [D]. Detroit: Wayne State University, 2005.
  • 5Harbor Research Pervasive lnternet Report. Approaching zero downtime: the Center for Intelligent Maintenancc Systems [ R?. 2003.
  • 6Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line thilure prognosties [ J ]. IEEE Transactions on Control System Technology, 1996, 4 ( 4 ) :443 -451.
  • 7Li Y, Billington S, Zhang C, et al. Adaptive prognosties for roiling element bearing condition [J]. Mechanical Systems and Signal Processing, 1999, 13( 1 ) : 103 - 113.
  • 8Li Y, Kurfeess T R, Liang S Y. Stochastic prognostics for rolling element bearings [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 747 - 762.
  • 9Glodez S, Sraml M, Kramberger J. A computational model for determination of service life of gears [J]. International Journal of Fatigue, 2002, 24(10) : 1013 - 1020.
  • 10Qiu J. Damage mechanics approach for bearing lifetime prognostics [J]. Mechanical Systems and Signal Processing, 2002, 16(5): 817-829.

共引文献40

同被引文献29

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部