期刊文献+

基于加权元组潜在语义分析的社会标签推荐 被引量:3

Social Tag Recommendation Based on Weighted Tuples Latent Semantic Analysis
原文传递
导出
摘要 社会标注系统中用户生成的标签具有随意性和弱关联性,这将导致标签推荐的精确性降低。本文基于加权元组潜在语义的三维张量结构模型,引入社会网络的结构化分析方法对相关元组进行量化加权,以构建加权的三维张量结构模型,并通过元组的潜在语义分析,得到能体现用户兴趣度的加权元组集。最后,通过典型标注网站Delicious中的用户标注数据集,验证了基于加权元组潜在语义分析的三维张量模型具有较好的标签推荐效果。 In the social tagging system, user generated tags is random and weak relevance, this will leadto reduced accuracy in tag recommendation. In this paper, based on weighted tuples latent semantic struc-ture model of three dimensional tensor, introduction of social network structured analysis method to quan-tify and weight the related tuples, to construct weighted structure model of three dimensional tensor, andthrough the latent semantic analysis of tuples, get weighted tuples sets that can reflect the measure of userinterest. Finally, Through the user marking data set of the typical Delicious websites, verified based onweighted tuples latent semantic analysis model of three dimensional tensor has better effect of tag recom-mendation.
出处 《情报科学》 CSSCI 北大核心 2015年第1期57-62,共6页 Information Science
基金 国家自然科学基金项目(71273121)
关键词 社会标注 标签推荐 张量模型 权重 social tagging tag recommendation tensor model weight
  • 相关文献

参考文献13

  • 1Breese J S, Heckerman D, Kadie C. Empirical analy- sis of predictive algorithms for collaborative filtering [C]//Proceedings of the Fourteenth conference on Un- certainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1998: 43-52.
  • 2A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme.In- formation Retrieval in Folksonomies: Search and Ranking[J]. The Semantic Web: Research and Applica- tions, 2006, (4) :411-426.
  • 3Symeonidis P, Nanopoulos A, Manolopoulos Y. A unified framework for providing recommendations in so- cial tagging systems based on ternary semantic analy- sis[J]. IEEE Trans. on Knowledge and Data Engineer- ing, 2010,22(2):179-192.
  • 4S. Golder and B. Huberman.The Structure of Collabor- ative Tagging Systems. technical report[EB/OL].2005. http://arxiv.org/pdf/es/O508082v 1,2005-09-24.
  • 5H. Halpin, V. Robu, and H. Shepherd.The Complex Dynamics of Collaborative Tagging[C].Proc.16th Int'l Conf. World Wide Web (WWW '07),2007:211-220.
  • 6R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag Recommendations in Folkson- omies[C]. UK: Knowledge Discovery in Databases (PKDD '07),2007:506-514.
  • 7J. Kleinberg.Authoritative Sources in a Hyperlinked Environment[J]. ACM, 1999,46(5):604-632.
  • 8Z. Xu, Y. Fu, J. Mao, and D. Su.Towards the Semantic Web:Collaborative Tag Suggestions[C]. Proc. Collaborative Web Tagging Workshop at World Wide Web (WWW '06), 2006.
  • 9L. Page, S. Brin, R. Motwani, and T. Winograd. The Pagerank Citation Ranking: Bringing Order to the Web [R]. Technical report, 1998.
  • 10Y. Xu, L. Zhang, and W. Liu. Cubic Analysis of Social Book- marking for Personalized Recommendation[C]. Frontiers of WWW Research and Development-APWeb '06,2006.

二级参考文献12

共引文献8

同被引文献55

  • 1唐晓波,全莉莉.基于分众分类的本体构建分析[J].情报理论与实践,2008,31(6):931-936. 被引量:17
  • 2Begelman G. Automated tag clustering : Improving search and exploration in the tag space [ C ]. Edinburgh : Proleedings of the Collaborative Web Tagging Workshop at WWW '06,2006:1 - 15.
  • 3Cui J,Liu H,He J ,et al.Tag Clus:A random walkbased method for tag clustering[J] .Knowledge & hfformation Systems, 2011, 27(2) : 193 - 225.
  • 4Adrian B,Sauermann L, Roth - berghofer T. Contag : A semantic tag recommendation system[C ]. Graz : Proceedings of I - Seman - tics, 2007 : 297 - 304.
  • 5Rendle S, Schmidt - Thieme L. Pairwise interaction tensor facto - rization for personalized tag recommendation[C]. Wsdm Pro- ceedings of the Third Acm International Conference on Web Search & Data Mining,2010:81 - 90.
  • 6Zhao W, Guan Z, Liu Z. Ranking on heterogeneous manifolds for tag recommendation in social tagging services [J ]. Neurocomput - ing, 2015 (148) : 521 - 534.
  • 7Djuana E, Xu Y, Li Y. Constructing tag ontology folksonomy based on Wordnet [ C ]. Shanghai:Proceedings of the IADIS International Conference on Internet Technologies & Society, 2011 : 1 - 9.
  • 8Lee H J, Sohn M. Tag - based integrated semantic ontology con - struction and evolution [ C ]. Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE Computer Society, 2013 : 221 - 227.
  • 9Farooq U, Kannampallil T G, Song Y, et al.Evaluating tagging behavior in social bookmarking systems:Metrics and design heuristics [ C ]. New York : Proceedings of the International ACM Conference on Supporting Group Work, 2007 : 351 - 360.
  • 10Zhou T C, Ma H, Lyu M R,et al. UserRec :A user recommenda- tion framework in social tagging systems [ C ]. Atlanta : Proceedings of the National Conference on Artificial Intelligence, 2010: 1486- 1491.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部