期刊文献+

一种C_50Cl_10富勒烯氯化物新的生成机理的密度泛函理论计算 被引量:2

Alternative Formation Mechanism of C_(50)Cl_(10) Fullerene Chloride Based on Density Functional Theory Calculations
下载PDF
导出
摘要 过去广泛接受#271C50Cl10是由#271C50空笼直接氯化得到.我们通过研究拓扑结构弄清了C50富勒烯之间的相互关系.利用密度泛函理论(DFT)计算从最稳定C50富勒烯#270C50出发,通过氯化和Stone-Wales(SW)转变获得#271C50Cl10.结果表明:氯化后最终产物是热力学最有利的,并且在有氯存在下,SW转变的活化能垒会降低.这些结果可以解释目前的相关实验事实,暗示了#270C50空笼先氯化得到不同#270C50氯化物,再进行两次SW旋转的路径,由于活化能垒更低因而是一条更为可行的路线. ^#271C_50Cl_10 is widely postulated to be a direct chlorination product of cage ^#271C50. We suggest an alternative formation mechanism of ^#271C_50Cl_10, based on the topological relationship of these C_50 fullerenes. Density functional theory (DFT) calculations of the proposed cage transformation pathway in the chlorination of C_50 were performed. The proposed pathway is stimulated by chlorination-promoted fullerene cage transformation, with a low activation barrier. DFT calculations of the Stone-Wales (SW) transformation pathways revealed that the thermodynamically favored rearrangement of other C_50 chlorofullerene into ^#271C_50Cl_10 requires a lower activation energy than that of the pristine carbon cage. This suggested that it is a more effective pathway of chlorinating ^#271C_50Cl_10.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第1期51-55,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21273177) 国家重点基础研究发展规划项目(973)(2011CB808504)资助~~
关键词 密度泛函理论 Stone-Wales转变 氯化 Density functional theory Stone-Wales transformation Chlorination
  • 相关文献

参考文献1

二级参考文献15

  • 1Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE, C60: buckminsterfullerene. Nature, 1985, 318: 162-163.
  • 2Fowler PW, Manolopoulos DE. An Atlas of Fullerenes. Oxford: Oxford University Press, 1995.
  • 3Kroto HW. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 1987,329: 529-531.
  • 4Bettinger HF, Yakobson BI, Scuseria GE. Scratching the surface of buckminsterfullerene: the barriers for stone wales transformation through symmetric and asymmetric transition states. JAm Chem Soc, 2003, 125: 5572-5580.
  • 5Weng QH, He Q, Liu T, Huang HY, Chen JH, Gao ZY, Xie SY, Lu X, Huang RB, Zheng LS. Simple combustion production and characterization of octahydro[60] fullerene with a non-IPR C60 cage. JAm Chem Soc, 2010, 132: 15093-15095.
  • 6Tan YZ, Liao ZJ, Qian ZZ, Chen RT, Wu X, Liang H, Han X, Zhu F, Zhou SJ, Zheng Z, Lu X, Xie SY, Huang RB, Zheng LS. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater, 2008, 7: 790-794.
  • 7Jia JF, Wu HS, Xu XH, Zhang XM, Jiao H. Fused five-membered rings determine the stability of CwF60. J Am Chern Soc, 2008, 130: 3985-3988.
  • 8Tan YZ, Xie SY, Huang RB, Zheng LS. The stabilization of fused-pentagon fullerene molecules. Nature Chem, 2009, I: 450-460.
  • 9Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Peters son GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 0, Nakai H, Kiene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev 0, Austin AJ, Cammi R, PomeJli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas 0, Malick DK, Rabuck AD, Raghavachari K, oresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L,Fox DJ, Keith T, AI-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, People JA. GAUSSIAN 09, Revision B.03. Pittsburgh PA: Gaussian Int, 2009.
  • 10Prinzbach H, Weber K. From an insecticide to Plato's universe-the pagodane route to dodecahedranes: new pathways and new perspectives. Angew Chem Int Ed, 1994,33: 2239-2257.

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部