期刊文献+

阳极氧化/GCD新工艺法制备镍基超级电容器薄膜电极 被引量:1

Fabrication of Nickel-Based Composite Film Electrode for Supercapacitors by a New Method of Anodization/GCD
下载PDF
导出
摘要 采用磷酸阳极氧化法在金属镍表面形成阳极氧化复合膜,在1 mol·L-1氢氧化钾溶液中进行大电流密度恒流充放电(GCD)处理,使基体表面形成一层多孔纳米花瓣状膜.采用扫描电镜(SEM),X射线光电子能谱(XPS),X射线衍射(XRD)仪,对膜的形貌、组成和结构进行了表征,使用电化学工作站、电池寿命测试仪对该膜的电容特性进行了测试.结果表明,所制氧化膜由三维多孔纳米花瓣状的Ni O、α-Ni(OH)2和β-Ni(OH)2构成,该膜具有优异的电容特性,其在电流密度为6.7 A·g-1时,比电容量达1509 F·g-1,而当电流密度为66.7 A·g-1时,比电容量为1120 F·g-1(为6.7 A·g-1时的74%).在电流密度为66.7 A·g-1时,经过2000次循环测试后比电容量基本保持不变. A nickel-based composite film was fabricated on Ni foil, by two-electrode anodization and galvanostatic charge-discharge (GCD) treatment. The surface morphology, states of chemical species, and crystal structure of the film were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The electrochemical performance was tested using an electrochemical workstation and battery program-control test system. The test results indicated that the film possessed a nanoflower-like morphology, and consisted of NiO, α-Ni(OH)2 and β-Ni(OH)2. The NiO-α-Ni(OH)2-β-Ni(OH)2 compounds exhibiting a high specific capacitance, superior rate capability, and good cyclability (1509 F·g^-1 at 6.7 A·g^-1, 1120 F·g^-1 at 66.7 A·g^-1, after 2000 cycles, the capacitance of the film remained unchanged).
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第1期99-104,共6页 Acta Physico-Chimica Sinica
基金 大学生创新训练项目(0000232321) 深圳大学教学改革项目(JG2012084) 国家自然科学基金(51172147 50702034)资助~~
关键词 超级电容器 阳极氧化 恒流充放电 薄膜 Supercapacitor Anodization Galvanostaticcharge-discharge Nickel Film
  • 相关文献

参考文献29

  • 1El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744.
  • 2Huang, J.; Xu, P.; Cao, D.; Zhou, X.; Yang, S.; Li, Y.; Wang, G. J. Power Sources 2014, 246, 371. doi: 10.1016/j.jpowsour.2013.07.105.
  • 3Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Adv. Funct. Mater. 2014, 24, 934. doi: 10.1002/adfm.v24.7.
  • 4Hu, C. C.; Chen, J. C.; Chang, K. H. J. Power Sources 2013, 221, 128. doi: 10.1016/j.jpowsour.2012.07.111.
  • 5Kim, S. J.; Park, G. J.; Kim, B. C.; Chung, J. K.; Wallace, G. G.; Park, S. Y. Synth. Met. 2012, 161, 2641. doi: 10.1016/j.synthmet.2011.09.034.
  • 6Zhu, J. H.; Jiang, J.; Liu, J. P.; Ding, R. M.; Ding, H.; Feng, Y. M.; Wei, G. M.; Huang, X. T. J. Solid State Chem. 2011, 184, 578. doi: 10.1016/j.jssc.2011.01.019.
  • 7张宣宣,冉奋,范会利,孔令斌,康龙.互通多孔碳/二氧化锰纳米复合材料的原位水热合成及电化学性能[J].物理化学学报,2014,30(5):881-890. 被引量:18
  • 8Conway, B. E.; Pell, W. G. J. Power Sources 2002, 105, 169. doi: 10.1016/S0378-7753(01)00936-3.
  • 9Feng, J.; Zhao, J.; Tang, B.; Liu, P.; Xu, J. J. Solid State Chem. 2010, 183, 2932. doi: 10.1016/j.jssc.2010.09.043.
  • 10Zhang, H.; Cao, G.; Yang, Y. Energ. Environ. Sci. 2009, 2, 932. doi: 10.1039/b906812k.

二级参考文献62

  • 1Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, E; Taberna, P. L. Science 2006, 313, 1760.
  • 2Arico, A. S.; Bruce, E; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
  • 3Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845.
  • 4Miller, J. R.; Simon, P. Science 2008, 321,651.
  • 5Wu, M. S.; Huang, Y. A.; Yang, C. H. J. Electrochem. Soc. 2008, 155, A798.
  • 6Zheng, J. E; Cygan, E J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699.
  • 7Sugimoto, W.; Iwata, H.; Yasunaga, Y.; Murakami, Y.; Takasu, Y. Angew. Chem. lnt. Edit. 2003, 42, 4092.
  • 8Wu, M. S.; Huang, C. Y.; Lin, K. H..L Power Sources 2009, 186, 557.
  • 9Zhao, D. D.; Bao, S. J.; Zhou, W. J.; Li, H. L. Electrochem. Commun. 2007, 9, 869.
  • 10Kong, L. B.; Lang, J. W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1194.

共引文献30

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部